Space-time Euler discretization schemes for the stochastic 2D Navier-Stokes equations
被引:10
|
作者:
Bessaih, Hakima
论文数: 0引用数: 0
h-index: 0
机构:
Florida Int Univ, Math & Stat Dept, 11200 SW 8th St, Miami, FL 33199 USAFlorida Int Univ, Math & Stat Dept, 11200 SW 8th St, Miami, FL 33199 USA
Bessaih, Hakima
[1
]
Millet, Annie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 1 Pantheon Sorbonne, EA 4543, SAMM, 90 Rue Tolbiac, F-75634 Paris, France
Univ Paris 6 Paris 7, UMR 8001, Lab Probabilites Stat & Modelisat, Paris, FranceFlorida Int Univ, Math & Stat Dept, 11200 SW 8th St, Miami, FL 33199 USA
Millet, Annie
[2
,3
]
机构:
[1] Florida Int Univ, Math & Stat Dept, 11200 SW 8th St, Miami, FL 33199 USA
[2] Univ Paris 1 Pantheon Sorbonne, EA 4543, SAMM, 90 Rue Tolbiac, F-75634 Paris, France
[3] Univ Paris 6 Paris 7, UMR 8001, Lab Probabilites Stat & Modelisat, Paris, France
来源:
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS
|
2022年
/
10卷
/
04期
We prove that the implicit time Euler scheme coupled with finite elements space discretization for the 2D Navier-Stokes equations on the torus subject to a random perturbation converges in L-2(Omega), and describe the rate of convergence for an H-1-valued initial condition. This refines previous results which only established the convergence in probability of these numerical approximations. Using exponential moment estimates of the solution of the stochastic Navier-Stokes equations and convergence of a localized scheme, we can prove strong convergence of this space-time approximation. The speed of the L-2(Omega)-convergence depends on the diffusion coefficient and on the viscosity parameter. In case of Scott-Vogelius mixed elements and for an additive noise, the convergence is polynomial.
机构:
Florida Int Univ, Math & Stat Dept, 11200 SW 8th St, Miami, FL 33199 USAFlorida Int Univ, Math & Stat Dept, 11200 SW 8th St, Miami, FL 33199 USA
Bessaih, Hakima
Millet, Annie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 1 Pantheon Sorbonne, SAMM, EA 4543, 90 Rue Tolbiac, F-75634 Paris, France
Univ Paris, F-75013 Paris, France
Sorbonne Univ, CNRS, Lab Probabilites Stat & Modelisat, F-75013 Paris, FranceFlorida Int Univ, Math & Stat Dept, 11200 SW 8th St, Miami, FL 33199 USA
机构:
Univ Wyoming, Dept Math & Stat, Dept 3036,1000 East Univ Ave, Laramie, WY 82071 USAUniv Wyoming, Dept Math & Stat, Dept 3036,1000 East Univ Ave, Laramie, WY 82071 USA
Bessaih, Hakima
Millet, Annie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 1 Pantheon Sorbonne, SAMM, EA 4543, 90 Rue Tolbiac, F-75634 Paris, France
Univ Paris 06, Lab Probabilites Stat & Modelisat, UMR 8001, Paris 7, FranceUniv Wyoming, Dept Math & Stat, Dept 3036,1000 East Univ Ave, Laramie, WY 82071 USA
机构:
Univ York, Dept Math, York YO10 5DD, N Yorkshire, EnglandUniv York, Dept Math, York YO10 5DD, N Yorkshire, England
Brzeniak, Zdzislaw
Motyl, Elzbieta
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lodz, Fac Math & Comp Sci, PL-91238 Lodz, PolandUniv York, Dept Math, York YO10 5DD, N Yorkshire, England
Motyl, Elzbieta
Ondrejat, Martin
论文数: 0引用数: 0
h-index: 0
机构:
Czech Acad Sci, Inst Informat Theory & Automat, Pod Vodarenskou Vezi 4, CZ-18208 Prague 08, Czech RepublicUniv York, Dept Math, York YO10 5DD, N Yorkshire, England