High rate capacity anode of Si-C composite nanofiber wrapped with Cu foam for lithium-ion batteries

被引:6
作者
Tian, Xiaoqiang [1 ]
Li, Gaoda [1 ]
Meng, Leixin [1 ]
Tian, Wang [1 ]
Gu, Xin [1 ]
Ding, Yaqin [1 ]
Zhang, Ruichao [1 ]
Jia, Xiaofeng [1 ]
Qin, Yong [1 ]
机构
[1] Lanzhou Univ, Inst Nanosci & Nanotechnol, Lanzhou 730000, Peoples R China
基金
中国博士后科学基金;
关键词
Silicon anode; Nanofiber anode; Si-C composite; Li ion battery; Energy storage and conversion; Nanocomposites; SILICON;
D O I
10.1016/j.matlet.2020.127572
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To resolve the huge volume expansion and poor electronic conductivity of silicon anode which restricts the cycling stability and rate capacity of lithium-ion batteries, a novel structure of copper foam wrapped silicon/carbon nanofibers (Si/CNFs-Cu) is successfully fabricated and applied as anode material in lithium ion battery. It exhibits excellent rate performance of 565.2 mAh g 1 at a high current density of 5 A g(-1) and high cycling stability with the retention rate of 66.7% after 80 cycles at 0.5 A g(-1). The rate capacity is as 2.8 times as Si/CNFs and it is attributed to the framework structure of Si/CNFs-Cu which insures the faster electron transfer along the thickness direction of the anode material in charging/discharging processes. Furthermore, the complete wrapped electrode structure can avoid the separation of the composite fibers from the electrode during cycling substantially. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:4
相关论文
共 10 条
[1]   Batteries and fuel cells for emerging electric vehicle markets [J].
Cano, Zachary P. ;
Banham, Dustin ;
Ye, Siyu ;
Hintennach, Andreas ;
Lu, Jun ;
Fowler, Michael ;
Chen, Zhongwei .
NATURE ENERGY, 2018, 3 (04) :279-289
[2]   Real-Time NMR Investigations of Structural Changes in Silicon Electrodes for Lithium-Ion Batteries [J].
Key, Baris ;
Bhattacharyya, Rangeet ;
Morcrette, Mathieu ;
Seznec, Vincent ;
Tarascon, Jean-Marie ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (26) :9239-9249
[3]   The Current Move of Lithium Ion Batteries Towards the Next Phase [J].
Kim, Tae-Hee ;
Park, Jeong-Seok ;
Chang, Sung Kyun ;
Choi, Seungdon ;
Ryu, Ji Heon ;
Song, Hyun-Kon .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :860-872
[4]   A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries [J].
Kovalenko, Igor ;
Zdyrko, Bogdan ;
Magasinski, Alexandre ;
Hertzberg, Benjamin ;
Milicev, Zoran ;
Burtovyy, Ruslan ;
Luzinov, Igor ;
Yushin, Gleb .
SCIENCE, 2011, 334 (6052) :75-79
[5]   Fabrication of Si core/C shell nanofibers and their electrochemical performances as a lithium-ion battery anode [J].
Lee, Byoung-Sun ;
Son, Seoung-Bum ;
Park, Kyu-Min ;
Seo, Jong-Hyun ;
Lee, Se-Hee ;
Choi, In-Suk ;
Oh, Kyu-Hwan ;
Yu, Woong-Ryeo .
JOURNAL OF POWER SOURCES, 2012, 206 :267-273
[6]   Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage [J].
Limthongkul, P ;
Jang, YI ;
Dudney, NJ ;
Chiang, YM .
ACTA MATERIALIA, 2003, 51 (04) :1103-1113
[7]   25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries [J].
McDowell, Matthew T. ;
Lee, Seok Woo ;
Nix, William D. ;
Cui, Yi .
ADVANCED MATERIALS, 2013, 25 (36) :4966-4984
[8]  
Meng GuY., 2012, ACS Nano, V6, P8439
[9]   Shuttle-like Porous Carbon Rods from Carbonized Metal-Organic Frameworks for High-Performance Capacitive Deionization [J].
Xu, Xingtao ;
Li, Jinliang ;
Wang, Miao ;
Liu, Yong ;
Lu, Ting ;
Pan, Likun .
CHEMELECTROCHEM, 2016, 3 (06) :993-998
[10]   Nanosilicon anodes for high performance rechargeable batteries [J].
Xu, Zheng-Long ;
Liu, Xianming ;
Luo, Yongsong ;
Zhou, Limin ;
Kim, Jang-Kyo .
PROGRESS IN MATERIALS SCIENCE, 2017, 90 :1-44