HEAT TRANSFER IMPLICATIONS OF ACOUSTIC RESONANCES IN HP TURBINE BLADE INTERNAL COOLING CHANNELS

被引:0
|
作者
Selcan, C. [1 ]
Cukurel, B. [1 ]
Shashank, J. [1 ]
机构
[1] Technion Israel Inst Technol, IL-32000 Haifa, Israel
来源
ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 5A | 2015年
关键词
acoustic resonances; standing sound waves; convective heat transfer; boundary layers; flow control; heat transfer enhancement; FLOW; FRICTION; FILM;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In an attempt to investigate the acoustic resonance effect of serpentine passages on internal convection heat transfer, the present work examines a typical high pressure turbine blade internal cooling system, based on the geometry of the NASA E-3 engine. In order to identij) the associated dominant acoustic characteristics, a numerical FEM simulation (two-step frequency domain analysis) is conducted to solve the Helmholtz equation with and without source terms. Mode shapes of the relevant identified eigenfrequencies (in the 0-20kHz range) are studied with respect to induced standing sound wave patterns and the local node/antinode distributions. It is observed that despite the complexity of engine geometries, as a first order approximation, the predominant resonance behavior can be modeled by a same-ended straight duct. Therefore, capturing the physics observed in a generic geometry, the heat transfer ramifications are experimentally investigated in a scaled wind tunnel facility at a representative resonance condition. Focusing on the straight cooling channel's longitudinal eigenmode in the presence of an isolated rib element, the impact of standing sound waves on convective heat transfer and aerodynamic losses are demonstrated by liquid crystal thermometry, local static pressure and sound level measurements. The findings indicate a pronounced heat transfer influence in the rib wake separation region, without a higher pressure drop penalty. This highlights the potential of modulating the aero-thermal performance of the system via acoustic resonance mode excitations.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Fluid flow and heat transfer in a rectangular ribbed channel with a hierarchical design for turbine blade internal cooling
    Zheng, Shao-Fei
    Liu, Guo-Qing
    Lian, Wen-Kai
    Yang, Yan-Ru
    Gao, Shu-Rong
    Sunden, Bengt
    Wang, Xiao-Dong
    APPLIED THERMAL ENGINEERING, 2022, 217
  • [32] Performance evaluation and enhancement of turbulent flow and convective heat transfer characteristics for turbine blade internal cooling
    Zhang, Ben-Xi
    Wang, Li-Qian
    Lu, Wei
    Xu, Jiang-Hai
    Wang, Yi-Bo
    Yang, Yan-Ru
    Wang, Xiao-Dong
    PHYSICS OF FLUIDS, 2024, 36 (03)
  • [33] Evaluation of Heat Transfer Enhancement on Rotational Gas Turbine Blade Internal Cooling Channel With Dimpled Surface
    Nourin, Farah Nazifa
    Blum, Brinn Leighton
    Amano, Ryoichi S.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2022, 144 (11):
  • [34] Heat Transfer in Internal Cooling Channels of Gas Turbine Blades: Buoyancy and Density Ratio Effects
    Saravani, Mandana S.
    DiPasquale, Nicholas J.
    Beyhaghi, Saman
    Amano, Ryoichi S.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2019, 141 (11):
  • [35] An experimental study of heat transfer in a simulated turbine blade cooling passage
    Dept of Mechanical Engineering, University of Wales, Singleton Park, Swansea SA2 8PP, United Kingdom
    Int J Heat Mass Transfer, 15 (3703-3716):
  • [36] Aerodynamic and Heat Transfer Simulation of Cooling Turbine Blade with Different Tips
    Yu, Kuahai
    Yang, Xi
    Wen, Zhixun
    Yue, Zhufeng
    MANUFACTURING SCIENCE AND MATERIALS ENGINEERING, PTS 1 AND 2, 2012, 443-444 : 763 - +
  • [37] Heat transfer experiment on film cooling of turbine blade leading edge
    Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing
    210016, China
    不详
    610500, China
    Tan, Xiao-Ming, 1600, Beijing University of Aeronautics and Astronautics (BUAA) (29):
  • [38] Heat transfer enhancement in combined cooling of the turbine blade leading edge
    Shchukin, A.V.
    Il'Inkov, A.V.
    Dezider'Ev, S.G.
    Ivanov, S.N.
    Russian Aeronautics, 2013, 56 (04): : 384 - 389
  • [39] UNSTEADY APPROACH TO HEAT TRANSFER IN TURBINE BLADE COOLING PASSAGES.
    Iskakov, K.M.
    Trushin, V.A.
    Soviet Aeronautics (English translation of Izvestiya VUZ, Aviatsionnaya Tekhnika), 1982, 25 (03): : 31 - 34
  • [40] Gas Turbine Blade Tip Heat Transfer and Cooling: A Literature Survey
    Sunden, Bengt
    Xie, Gongnan
    HEAT TRANSFER ENGINEERING, 2010, 31 (07) : 527 - 554