This paper discusses a phase-sensitive technique for remote interrogation of passive Bragg grating Fabry-Wrot resonators. It is based on Pound-Drever-Hall (PDH) laser frequency locking, using radio-frequency phase modulation sidebands to derive an error signal from the complex optical response, near resonance, of a Fabry-Wrot interferometer. We examine how modulation frequency and resonance bandwidth affect this error signal. Experimental results are presented that demonstrate, when the laser is locked, this method detects differential phase shifts in the optical carrier relative to its sidebands, due to minute fiber optical path displacements.