NORMALIZED SOLUTIONS FOR CHOQUARD EQUATIONS WITH GENERAL NONLINEARITIES

被引:26
作者
Yuan, Shuai [1 ]
Chen, Sitong [1 ]
Tang, Xianhua [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2020年 / 28卷 / 01期
基金
中国国家自然科学基金;
关键词
Choquard equations; normalized solution; variational method; minimax method; weak solutions; SCHRODINGER-POISSON SYSTEM; GROUND-STATE SOLUTIONS; NEHARI-POHOZAEV TYPE; PRESCRIBED NORM; EXISTENCE;
D O I
10.3934/era.2020017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the existence of positive solutions with prescribed L-2-norm to the following Choquard equation: -Delta u - lambda u = (I-alpha * F(u)) f(u), x is an element of R-3, where lambda is an element of R, alpha is an element of (0,3) and I-alpha : R-3 -> R- ( ) is the Riesz potential. Under the weaker conditions, by using a minimax procedure and some new analytical techniques, we show that for any c > 0, the above equation possesses at least a couple of weak solution((u) over barc, (lambda) over barc) is an element of S-c x R(- )such that parallel to(u) over barc parallel to(2)(2) = c.
引用
收藏
页码:291 / 309
页数:19
相关论文
共 30 条
[1]   S2-PM: Semi-Supervised Learning for Efficient Performance Modeling of Analog and Mixed Signal Circuits [J].
Alawieh, Mohamed Baker ;
Tang, Xiyuan ;
Pan, David Z. .
24TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC 2019), 2019, :268-273
[2]  
[Anonymous], 1954, Untersuchung uiber die Elektronentheorie der Kristalle, DOI DOI 10.1515/9783112649305
[3]   A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems [J].
Bartsch, Thomas ;
Soave, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) :4998-5037
[4]   Normalized solutions for a system of coupled cubic Schrodinger equations on R3 [J].
Bartsch, Thomas ;
Jeanjean, Louis ;
Soave, Nicola .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (04) :583-614
[5]   Existence and instability of standing waves with prescribed norm for a class of Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Jeanjean, Louis ;
Luo, Tingjian .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 :303-339
[6]   Scaling properties of functionals and existence of constrained minimizers [J].
Bellazzini, Jacopo ;
Siciliano, Gaetano .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (09) :2486-2507
[7]   HIGH ENERGY SOLUTIONS OF THE CHOQUARD EQUATION [J].
Cao, Daomin ;
Li, Hang .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (06) :3023-3032
[8]   Semiclassical ground state solutions for critical Schrodinger-Poisson systems with lower perturbations [J].
Chen, Sitong ;
Fiscella, Alessio ;
Pucci, Patrizia ;
Tang, Xianhua .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (06) :2672-2716
[9]   On the planar Schrodinger-Poisson system with the axially symmetric potential [J].
Chen, Sitong ;
Tang, Xianhua .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (03) :945-976
[10]   Normalized solutions for Schrodinger-Poisson equations with general nonlinearities [J].
Chen, Sitong ;
Tang, Xianhua ;
Yuan, Shuai .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 481 (01)