Coefficient bounds for certain two subclasses of bi-univalent functions

被引:5
作者
Adegani, Ebrahim Analouei [1 ]
Cho, Nak Eun [2 ]
Alimohammadi, Davood [3 ]
Motamednezhad, Ahmad [1 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, POBox 316-36155, Shahrood, Iran
[2] Pukyong Natl Univ, Coll Nat Sci, Dept Appl Math, Busan 608737, South Korea
[3] Arak Univ, Fac Sci, Dept Math, Arak 3815688349, Iran
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 09期
基金
新加坡国家研究基金会;
关键词
univalent functions; bi-univalent functions; coefficient bounds; Faber polynomial expansion; subordination; POLYNOMIAL EXPANSION METHOD; COMPREHENSIVE SUBCLASS;
D O I
10.3934/math.2021530
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, coefficient bounds of bi-univalent functions in certain two subclasses, which are defined by subordination are estimated. Some special outcomes of the main results are also presented. Moreover, it is remarked that the given bounds improve and generalize some of the pervious results.
引用
收藏
页码:9126 / 9137
页数:12
相关论文
共 39 条
[1]  
Adegani E.A., 2020, J COMPUT ANAL APPL, V28, P261
[2]   Coefficient estimates for m-fold symmetric bi-subordinate functions [J].
Adegani, Ebrahim A. ;
Hamidi, Samaneh G. ;
Jahangiri, Jay M. ;
Zireh, Ahmad .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (02) :365-371
[3]   COEFFICIENT ESTIMATES FOR A SUBCLASS OF ANALYTIC BI-UNIVALENT FUNCTIONS [J].
Adegani, Ebrahim Analouei ;
Bulut, Serap ;
Zireh, Ahmad .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (02) :405-413
[4]   Differential calculus on the Faber polynomials [J].
Airault, H ;
Bouali, A .
BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (03) :179-222
[5]   An algebra of differential operators and generating functions on the set of univalent functions [J].
Airault, H ;
Ren, JG .
BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (05) :343-367
[6]   General coefficient estimates for bi-univalent functions: a new approach [J].
Al-Refai, Oqlah ;
Ali, Mohammed .
TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (01) :240-251
[7]   Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions [J].
Ali, Rosihan M. ;
Lee, See Keong ;
Ravichandran, V. ;
Supramaniam, Shamani .
APPLIED MATHEMATICS LETTERS, 2012, 25 (03) :344-351
[8]   Cofficient Bounds for Subclasses of Analytic and Bi-Univalent Functions [J].
Alimohammadi, Davood ;
Cho, Nak Eun ;
Adegani, Ebrahim Analouei .
FILOMAT, 2020, 34 (14) :4709-4721
[9]  
[Anonymous], 2013, Int. J. Math. Math. Sci., DOI DOI 10.1155/2013/190560
[10]  
[Anonymous], 2015, Journal of the Egyptian Mathematical Society, DOI [10.1016/j.joems.2014.04.002, DOI 10.1016/J.JOEMS.2014.04.002]