Universal approximation in p-mean by neural networks

被引:16
作者
Burton, RM
Dehling, HG [1 ]
机构
[1] Oregon State Univ, Dept Math, Corvallis, OR 97331 USA
[2] Univ Groningen, Dept Math, NL-9700 AV Groningen, Netherlands
关键词
approximation theory; L-p-approximation; neural networks; single hidden layer network; universal transfer functions;
D O I
10.1016/S0893-6080(98)00009-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A feedforward neural net with d input neurons and with a single hidden layer of n neurons is given by [GRAPHICS] where a(j), theta(j), w(ji) is an element of R. In this paper we study the approximation of arbitrary functions f: R-d --> R by a neural net in an L-p(mu) norm for some finite measure mu on R-d. We prove that under natural moment conditions, a neural net with non-polynomial function can approximate any given function. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:661 / 667
页数:7
相关论文
共 7 条
[1]  
[Anonymous], P IEEE 2 INT C NEUR
[2]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
[3]   ON THE APPROXIMATE REALIZATION OF CONTINUOUS-MAPPINGS BY NEURAL NETWORKS [J].
FUNAHASHI, K .
NEURAL NETWORKS, 1989, 2 (03) :183-192
[4]   APPROXIMATION CAPABILITIES OF MULTILAYER FEEDFORWARD NETWORKS [J].
HORNIK, K .
NEURAL NETWORKS, 1991, 4 (02) :251-257
[5]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[6]   MULTILAYER FEEDFORWARD NETWORKS WITH A NONPOLYNOMIAL ACTIVATION FUNCTION CAN APPROXIMATE ANY FUNCTION [J].
LESHNO, M ;
LIN, VY ;
PINKUS, A ;
SCHOCKEN, S .
NEURAL NETWORKS, 1993, 6 (06) :861-867
[7]  
Schwartz L., 1950, Theorie des distributions