Tunable photonic spin Hall effect due to the chiral Hall effect in strained Weyl semimetals

被引:20
作者
Jia, Guangyi [1 ]
Zhang, Ruixia [1 ]
Huang, Zhenxian [1 ]
Ma, Qiaoyun [1 ]
Wang, Huaiwen [1 ,2 ]
Asgari, Reza [3 ]
机构
[1] Tianjin Univ Commerce, Sch Sci, Tianjin 300134, Peoples R China
[2] Tianjin Univ Commerce, Tianjin Key Lab Refrigerat Technol, Tianjin 300134, Peoples R China
[3] IPM, Inst Res Fundamental Sci, Sch Phys, Tehran 193955531, Iran
基金
中国国家自然科学基金;
关键词
Weyl semimetals; strain; chiral Hall effect; photonic spin Hall effect; LIGHT;
D O I
10.1088/1367-2630/ac068d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The latest research suggests that strain can be utilized to engineer the electronic states of Weyl semimetals (WSMs) through creating a pseudo-magnetic field B (el). The response of strained WSMs to a real time-varying electric field E with E perpendicular to B (el) can cause spatial chirality and charge separation in WSMs, i.e., the chiral Hall effect (CHE). Herein, the photonic spin Hall effect (PSHE) modified by CHE in strained WSM thin films is studied. We show that the in-plane and transverse photonic spin-dependent shifts (⟨Delta x (+)⟩ and ⟨Delta y (+)⟩) can be tuned to be more than 400 and 50 times of incident wavelength, respectively, at the angular frequency being close to the cyclotron frequency of massless fermions in the pseudo-magnetic field. In order to enhance the PSHE, epsilon-near-zero materials take priority of being as the substrates of WSM films. Besides, both ⟨Delta x (+)⟩ and ⟨Delta y (+)⟩ generally give extreme values around incident angles at which Fresnel reflection coefficients exhibit local minimums, whereas an inversion-symmetry breaking with nonzero axial chemical potential may break this generality. Finally, one possible experimental strategy for observing this CHE tuned PSHE is schemed, which may provide a pristine optical technique to precisely engineer and detect the strain in topological materials.
引用
收藏
页数:12
相关论文
共 50 条
[1]   Spin-Hall effect of light at a tilted polarizer [J].
Bliokh, K. Y. ;
Prajapati, C. ;
Samlan, C. T. ;
Viswanathan, N. K. ;
Nori, F. .
OPTICS LETTERS, 2019, 44 (19) :4781-4784
[2]   Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons [J].
Caldwell, Joshua D. ;
Lindsay, Lucas ;
Giannini, Vincenzo ;
Vurgaftman, Igor ;
Reinecke, Thomas L. ;
Maier, Stefan A. ;
Glembocki, Orest J. .
NANOPHOTONICS, 2015, 4 (01) :44-68
[3]   Precision Measurement of the Optical Conductivity of Atomically Thin Crystals via the Photonic Spin Hall Effect [J].
Chen, Shizhen ;
Ling, Xiaohui ;
Shu, Weixing ;
Luo, Hailu ;
Wen, Shuangchun .
PHYSICAL REVIEW APPLIED, 2020, 13 (01)
[4]   Weak-value amplification for Weyl-point separation in momentum space [J].
Chen, Shizhen ;
Mi, Chengquan ;
Wu, Weijie ;
Zhang, Wenshuai ;
Shu, Weixing ;
Luo, Hailu ;
Wen, Shuangchun .
NEW JOURNAL OF PHYSICS, 2018, 20
[5]   Symmetrical broken and nonlinear response of Weyl semimetal TaAs influenced by the topological surface states and Weyl nodes [J].
Chi, Shumeng ;
Li, Zhilin ;
Yu, Haohai ;
Wang, Gang ;
Wang, Shuxian ;
Zhang, Huaijin ;
Wang, Jiyang .
ANNALEN DER PHYSIK, 2017, 529 (04)
[6]   Visco elasticity in 2D materials [J].
Cortijo, Alberto ;
Ferreiros, Yago ;
Landsteiner, Karl ;
Vozmediano, Maria A. H. .
2D MATERIALS, 2016, 3 (01) :1DUUMY
[7]   Elastic Gauge Fields in Weyl Semimetals [J].
Cortijo, Alberto ;
Ferreiros, Yago ;
Landsteiner, Karl ;
Vozmediano, Maria A. H. .
PHYSICAL REVIEW LETTERS, 2015, 115 (17)
[8]   Direct Visualizing the Spin Hall Effect of Light via Ultrahigh-Order Modes [J].
Dai, Hailang ;
Yuan, Luqi ;
Yin, Cheng ;
Cao, Zhuangqi ;
Chen, Xianfeng .
PHYSICAL REVIEW LETTERS, 2020, 124 (05)
[9]   Strain engineering in two-dimensional nanomaterials beyond graphene [J].
Deng, Shikai ;
Sumant, Anirudha V. ;
Berry, Vikas .
NANO TODAY, 2018, 22 :14-35
[10]   Controlling photonic spin Hall effect in graphene-dielectric structure by optical pumping [J].
Dong, Peng ;
Cheng, Jie ;
Da, Haixia ;
Yan, Xiaohong .
NEW JOURNAL OF PHYSICS, 2020, 22 (11)