An optimised stability model for the magnetohydrodynamic fluid

被引:14
作者
Hussain, Zakir [1 ,2 ]
Zeesahan, Raja [1 ]
Shahzad, Muhammad [3 ]
Ali, Mehboob [3 ,4 ]
Sultan, Faisal [3 ,4 ]
Anter, Ahmed M. [2 ,5 ]
Zhang, Huisheng [2 ]
Khan, Nazar [6 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Abbottabad Campus, Mansehra 22060, Pakistan
[2] Shenzhen Univ, Sch Med, Dept Biomed Engn, Shenzhen 518060, Peoples R China
[3] Univ Haripur, Dept Pure & Appl Math, Haripur 22620, Pakistan
[4] Hazara Univ, Dept Math & Stat, Mansehra 21300, Pakistan
[5] Beni Suef Univ, Fac Comp & Informat, Bani Suwayf, Egypt
[6] Allama Iqbal Open Univ, Dept Math, H-8, Islamabad 44000, Pakistan
来源
PRAMANA-JOURNAL OF PHYSICS | 2021年 / 95卷 / 01期
基金
中国国家自然科学基金;
关键词
Instability; magnetohydrodynamics; Chebyshev collocation method; electrically conductive fluid; 47; 65; -d; 20; Ib; ASSESSMENTS; FLOW;
D O I
10.1007/s12043-020-02043-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Magnetohydrodynamics (MHD) is a very challenging problem which affects the stability of Poiseuille flow. Therefore, in this work we investigate the instability of an electrically conductive fluid between two parallel plates under the influence of a transverse magnetic field. We apply the Chebyshev collocation method to solve the generalised Orr-Summerfield equations to determine wave number, growth rates and spatial modes of the eigenmodes. To get the neutral curves of MHD instability, the QZ method is used. It is observed that the magnetic field has a stabilising effect on the flow and the stability increases as we increase the Hartmann number and for various wave numbers, magnetic field put down the growth of perturbation. It is concluded that effect of perturbations is little in span-wise direction for different Hartmann numbers that increase the critical values of Reynolds numbers.
引用
收藏
页数:7
相关论文
共 25 条
[1]   Mathematical modeling and analysis of Cross nanofluid flow subjected to entropy generation [J].
Abbas, S. Z. ;
Khan, W. A. ;
Sun, H. ;
Ali, M. ;
Irfan, M. ;
Shahzed, M. ;
Sultan, F. .
APPLIED NANOSCIENCE, 2020, 10 (08) :3149-3160
[2]   Computational analysis of entropy generation for cross-nanofluid flow [J].
Ali, M. ;
Khan, W. A. ;
Irfan, M. ;
Sultan, F. ;
Shahzed, M. ;
Khan, M. .
APPLIED NANOSCIENCE, 2020, 10 (08) :3045-3055
[3]   Physical assessments on the invariant region in multi-route reaction mechanism [J].
Ali, Mehboob ;
Shahzad, Muhammad ;
Sultan, Faisal ;
Khan, Waqar Azeem .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 545
[4]  
[Anonymous], 1968, CHEBYSHEV POLYNOMIAL
[5]   Hydromagnetic stability of plane Poiseuille and Couette flow of viscoelastic fluid [J].
Eldabe, Nabil T. M. ;
El-Sabbagh, M. F. ;
Hajjaj, M. A. S. El-Sayed .
FLUID DYNAMICS RESEARCH, 2006, 38 (10) :699-715
[6]  
Han K, 2018, 2018 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM IN CHINA (ACES-CHINA 2018)
[7]   Characteristics of chemical processes and heat source/sink with wedge geometry [J].
Haq, I ;
Shahzad, M. ;
Khan, W. A. ;
Irfan, M. ;
Mustafa, S. ;
Ali, M. ;
Sultan, F. .
CASE STUDIES IN THERMAL ENGINEERING, 2019, 14
[8]   Stability of MHD Wall driven Flow through a Tube [J].
Hossain, M. Mainul ;
Khan, M. A. H. .
10TH INTERNATIONAL CONFERENCE ON MARINE TECHNOLOGY (MARTEC 2016), 2017, 194 :428-434
[9]  
Hussain Z, 2013, J GRADUATE U CHIN AC, V30, P304
[10]   A rheological analysis of nanofluid subjected to melting heat transport characteristics [J].
Khan, W. A. ;
Ali, M. ;
Irfan, M. ;
Khan, M. ;
Shahzad, M. ;
Sultan, F. .
APPLIED NANOSCIENCE, 2020, 10 (08) :3161-3170