A note on Terai's conjecture concerning Pythagorean numbers

被引:7
作者
Chen, XG
Le, MH
机构
[1] Department of Mathematics, Maoming Education College
[2] Department of Mathematics, Zhanjiang Teachers College
关键词
D O I
10.3792/pjaa.74.80
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (a, b, c) be a primitive Pythagorean triple with 2 \ a. In this note we prove that if b not equal 1 (mod 16), b(2) + 1 = 2c, b and c are both odd primes, then the equation x(2) + b(v) = c(z) has only the positive integer solutions (x, y, z) = (a, 2, 2).
引用
收藏
页码:80 / 81
页数:2
相关论文
共 4 条
[1]  
LE MH, 1995, ACTA ARITH, V71, P253
[2]  
LJUNGGREN W, 1942, AVH NORSKE VID AKAD, V5, P1
[3]  
Stormer C., 1899, B SOC MATH FRANCE, V27, P160, DOI 10.24033/bsmf.603
[4]   THE DIOPHANTINE EQUATION X(2)+Q(M)=P(N) [J].
TERAI, N .
ACTA ARITHMETICA, 1993, 63 (04) :351-358