Mechanical Synthesis and Hydrogen Storage Characterization of MgVCr and MgVTiCrFe High-Entropy Alloy

被引:89
|
作者
de Marco, Marcelo Orpinelli [1 ]
Li, Yongtao [2 ,3 ]
Li, Hai-Wen [3 ,4 ,5 ]
Edalati, Kaveh [5 ]
Floriano, Ricardo [1 ]
机构
[1] Univ Estadual Campinas, UNICAMP, FCA, Rua Pedro Zaccaria 1300, BR-13484350 Limeira, SP, Brazil
[2] Anhui Univ Technol, Sch Mat Sci & Engn, Maanshan 243002, Peoples R China
[3] Kyushu Univ, Int Res Ctr Hydrogen Energy, Fukuoka, Fukuoka 8190395, Japan
[4] Kyushu Univ, Platform Inter Transdisciplinary Energy Res Q PIT, Fukuoka, Fukuoka 8190395, Japan
[5] Kyushu Univ, WPI, I2CNER, Fukuoka, Fukuoka 8190395, Japan
基金
巴西圣保罗研究基金会;
关键词
body-centered cubic alloys; high-entropy alloys; high-pressure torsion; hydrogen storage; magnesium alloys; HIGH-PRESSURE TORSION; SEVERE PLASTIC-DEFORMATION; DESORPTION PROPERTIES; MAGNESIUM; MICROSTRUCTURE; TI; THERMODYNAMICS; KINETICS; DESIGN; IRON;
D O I
10.1002/adem.201901079
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Body-centered cubic (BCC) and high-entropy alloys are being investigated as potential hydrogen storage materials due to their ability to absorb high amounts of hydrogen at moderate temperatures. Herein, the synthesis and hydrogen storage behavior of new MgVCr BCC and MgTiVCrFe high-entropy alloys are studied. The alloys are initially synthesized by mechanical alloying via high-energy ball milling (HEBM) under hydrogen atmosphere followed by high-pressure torsion (HPT) processing to improve activation. X-ray diffraction (XRD) in combination with transmission electron microscopy (TEM) shows a very refined nanostructure in both samples with the presence of a BCC solid solution phase for MgVCr, whereas the crystalline and amorphous phases coexist in MgTiVCrFe. The MgVCr alloy exhibits fast kinetics but with a low reversible hydrogen storage capacity (up to 0.9 wt%), whereas MgTiVCrFe shows low affinity to absorb hydrogen. Moreover, MgTiVCrFe demonstrates a partial decomposition from the initial structure by hydrogen storage cycling, whereas MgVcr exhibits reasonable stability.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Superior catalytic action of high-entropy alloy on hydrogen sorption properties of MgH2
    Verma, Satish Kumar
    Mishra, Shashank Shekhar
    Mukhopadhyay, Nilay Krishna
    Yadav, Thakur Prasad
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 749 - 762
  • [22] The future of hydrogen economy: Role of high entropy alloys in hydrogen storage
    Qureshi, Tabrez
    Khan, Mohammad Mohsin
    Pali, Harveer Singh
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1004
  • [23] Preliminary assessment of high-entropy alloys for tritium storage
    Zhang, Jian-Wei
    Hu, Ju-Tao
    Li, Peng-Cheng
    Huang, Gang
    Shen, Hua-Hai
    Xiao, Hai-Yan
    Zhou, Xiao-Song
    Zu, Xiao-Tao
    TUNGSTEN, 2021, 3 (02) : 119 - 130
  • [24] Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding
    Zhang, Mina
    Zhou, Xianglin
    Yu, Xiangnan
    Li, Jinghao
    SURFACE & COATINGS TECHNOLOGY, 2017, 311 : 321 - 329
  • [25] Application of high-pressure technology in exploring mechanical properties of high-entropy alloys
    Li, Shu-Cong
    Wang, Qing-Lin
    Yao, Yu
    Sang, Dan-Dan
    Zhang, Hai-Wa
    Zhang, Guo-Zhao
    Wang, Cong
    Liu, Cai-Long
    TUNGSTEN, 2023, 5 (01) : 50 - 66
  • [26] Mitigating hydrogen embrittlement in high-entropy alloys for next-generation hydrogen storage systems
    Balaji, V.
    Jeyapandiarajan, P.
    Joel, J.
    Anbalagan, Arivazhagan
    Ashwath, P.
    Anouncia, S. Margret
    Batako, Andre
    Xavior, M. Anthony
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 7681 - 7697
  • [27] Hydrogen storage in high-entropy alloys with varying degree of local lattice strain
    Nygard, Magnus Moe
    Ek, Gustav
    Karlsson, Dennis
    Sahlberg, Martin
    Sorby, Magnus H.
    Hauback, Bjorn C.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (55) : 29140 - 29149
  • [28] High-Entropy Alloys for Solid Hydrogen Storage: Potentials and Prospects
    Thakur Prasad Yadav
    Abhishek Kumar
    Satish Kumar Verma
    Nilay Krishna Mukhopadhyay
    Transactions of the Indian National Academy of Engineering, 2022, 7 (1) : 147 - 156
  • [29] Synthesis of high-entropy materials
    Sun, Yifan
    Dai, Sheng
    NATURE SYNTHESIS, 2024, 3 (12): : 1457 - 1470
  • [30] MICROSTRUCTURE AND MECHANICAL PROPERTIES OF REFRACTORY HIGH-ENTROPY ALLOY HfMoNbTiCr
    Yi, Jiaojiao
    Wang, Lu
    Xu, Mingqin
    Yang, Lin
    MATERIALI IN TEHNOLOGIJE, 2021, 55 (02): : 305 - 310