Deep Learning for Retinal Image Quality Assessment of Optic Nerve Head Disorders

被引:9
作者
Chan, Ebenezer Jia Jun [1 ]
Najjar, Raymond P. [1 ,2 ]
Tang, Zhiqun [2 ]
Milea, Dan [1 ,2 ,3 ,4 ]
机构
[1] Duke NUS Sch Med, Singapore, Singapore
[2] Singapore Eye Res Inst, Visual Neurosci Grp, Singapore, Singapore
[3] Singapore Natl Eye Ctr, Ophthalmol Dept, Singapore, Singapore
[4] Univ Copenhagen, Rigshosp, Copenhagen, Denmark
来源
ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY | 2021年 / 10卷 / 03期
基金
英国医学研究理事会;
关键词
deep learning; optic nerve head; optic neuropathy; papilledema; retinal image quality assessment; ARTIFICIAL-INTELLIGENCE; FUNDUS IMAGES; PAPILLEDEMA; BARRIERS;
D O I
10.1097/APO.0000000000000404
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Deep learning (DL)-based retinal image quality assessment (RIQA) algorithms have been gaining popularity, as a solution to reduce the frequency of diagnostically unusable images. Most existing RIQA tools target retinal conditions, with a dearth of studies looking into RIQA models for optic nerve head (ONH) disorders. The recent success of DL systems in detecting ONH abnormalities on color fundus images prompts the development of tailored RIQA algorithms for these specific conditions. In this review, we discuss recent progress in DL-based RIQA models in general and the need for RIQA models tailored for ONH disorders. Finally, we propose suggestions for such models in the future.
引用
收藏
页码:282 / 288
页数:7
相关论文
共 60 条
  • [1] Web-based screening for diabetic retinopathy in a primary care population: The EyeCheck project
    Abramoff, MD
    Suttorp-Schulten, MSA
    [J]. TELEMEDICINE JOURNAL AND E-HEALTH, 2005, 11 (06): : 668 - 674
  • [2] Abramoff Michael D, 2010, IEEE Rev Biomed Eng, V3, P169, DOI 10.1109/RBME.2010.2084567
  • [3] Accuracy of machine learning for differentiation between optic neuropathies and pseudopapilledema
    Ahn, Jin Mo
    Kim, Sangsoo
    Ahn, Kwang-Sung
    Cho, Sung-Hoon
    Kim, Ungsoo S.
    [J]. BMC OPHTHALMOLOGY, 2019, 19 (01)
  • [4] Artificial Intelligence to Identify Retinal Fundus Images, Quality Validation, Laterality Evaluation, Macular Degeneration, and Suspected Glaucoma
    Angel Zapata, Miguel
    Royo-Fibla, Didac
    Font, Octavi
    Ignacio Vela, Jose
    Marcantonio, Ivanna
    Ulises Moya-Sanchez, Eduardo
    Sanchez-Perez, Abraham
    Garcia-Gasulla, Dario
    Cortes, Ulises
    Ayguade, Eduard
    Labarta, Jesus
    [J]. CLINICAL OPHTHALMOLOGY, 2020, 14 : 419 - 429
  • [5] [Anonymous], 2006, P NEURAL INFORM PROC
  • [6] Brazilian Longitudinal Study of Adult Health (ELSA-Brasil): Objectives and Design
    Aquino, Estela M. L.
    Barreto, Sandhi Maria
    Bensenor, Isabela M.
    Carvalho, Marilia S.
    Chor, Dora
    Duncan, Bruce B.
    Lotufo, Paulo A.
    Mill, Jose Geraldo
    Molina, Maria Del Carmen
    Mota, Eduardo L. A.
    Azeredo Passos, Valeria Maria
    Schmidt, Maria Ines
    Szklo, Moyses
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2012, 175 (04) : 315 - 324
  • [7] Promising Artificial Intelligence-Machine Learning-Deep Learning Algorithms in Ophthalmology
    Balyen, Lokman
    Peto, Tunde
    [J]. ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY, 2019, 8 (03): : 264 - 272
  • [8] Automated quality evaluation of digital fundus photographs
    Bartling, Herman
    Wanger, Peter
    Martin, Lene
    [J]. ACTA OPHTHALMOLOGICA, 2009, 87 (06) : 643 - 647
  • [9] Bhatkalkar B., 2020, International Journal of Electrical & Computer Engineering, P10
  • [10] Optic Disc Classification by Deep Learning versus Expert Neuro-Ophthalmologists
    Biousse, Valerie
    Newman, Nancy J.
    Najjar, Raymond P.
    Vasseneix, Caroline
    Xu, Xinxing
    Ting, Daniel S.
    Milea, Leonard B.
    Hwang, Jeong-Min
    Kim, Dong Hyun
    Yang, Hee Kyung
    Hamann, Steffen
    Chen, John J.
    Liu, Yong
    Wong, Tien Yin
    Milea, Dan
    [J]. ANNALS OF NEUROLOGY, 2020, 88 (04) : 785 - 795