Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques

被引:238
|
作者
Mansour, Shawky [1 ,3 ]
Al-Belushi, Mohammed [2 ]
Al-Awadhi, Talal [1 ]
机构
[1] Sultan Qaboos Univ, Coll Arts & Social Sci, Dept Geog, POB 42 Al Khod PC 123, Muscat, Oman
[2] Sultan Qaboos Univ, Coll Arts & Social Sci, Dept Archaeol, Muscat, Oman
[3] Alexandria Univ, Fac Arts, Dept Geog & GIS, Alexandria, Egypt
关键词
GIS; CA-Markov; Simulation; Urban expansion; Mountainous cities; Oman; CELLULAR-AUTOMATA MODELS; ENVIRONMENTAL-IMPACT; URBAN-GROWTH; LANDSCAPE DYNAMICS; ECOSYSTEM SERVICES; URBANIZATION; CHAIN; REGION; AREA; METROPOLIS;
D O I
10.1016/j.landusepol.2019.104414
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As a result of the socioeconomic transformation, the rapid urban expansion of cities and towns in the Gulf Cooperation Council (GCC) states has predominately led to tremendous pressure on the limited natural resources and loss of productive lands. Indeed, the spatial patterns of urbanisation and their impacts on mountain resources and environment have received little attention, particularly in Oman. Predicting urban growth in the mountainous cities has the potential to better understand the interaction between the spatial growth patterns and the mountain topography. This study aims to analyse spatiotemporal dynamics of land use/land cover (LULC) (2008-2018) and simulate urban expansion (2008-2038) in Nizwa city, Al Dakhliyah governorate, Oman. Cellular Automata (CA)-Markov and geospatial techniques were utilised to assess and project urban growth and land cover changes. The analysis was based on three maps of LULC at equal intervals derived from satellite imageries: Landsat TM for 1998, 2008 and 2018, along with topographic spatial layers (elevation, aspects, and terrain slopes) derived from the ASTER digital elevation model. In addition, other spatial para. meters (population density, proximity to urban centres, and proximity to major roads,) were incorporated in the simulation process. The findings revealed that the actual LULC change during 2008-2018 was 12,014 ha of net urban growth (418.5 % change), while the simulated change was expected to be 14,985 ha by 2028, with a total of 37,465 ha increase in the built-up area and urban growth by 2038. Although the topographic variability will control LULC changes, the urban expansion overly will occupy the arable land across the valleys along with the flat areas. During the next two decades, the built-up areas will dominant, with a large percentage of vacant land (net loss 12,813 ha) and vegetation cover (net loss 35 ha) will be gradually converted into residential land use. The output of the simulations in this research could serve not only as spatial guidelines for monitoring future trends of LULC dynamics, but also address the threats and deteriorates of urban sustainability in the Omani mountainous cities. Furthermore, identifying bare soils and vegetation areas that are susceptible to urbanisation is of value for the national strategy of future urban planning in Oman.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Mapping and monitoring land use and land cover changes in Mellegue watershed using remote sensing and GIS
    Weslati, Okba
    Bouaziz, Samir
    Serbaji, Mohamed Moncef
    ARABIAN JOURNAL OF GEOSCIENCES, 2020, 13 (14)
  • [42] Mapping and monitoring land use and land cover changes in Mellegue watershed using remote sensing and GIS
    Okba Weslati
    Samir Bouaziz
    Mohamed Moncef Serbaji
    Arabian Journal of Geosciences, 2020, 13
  • [43] Monitoring Land Use/Land Cover Changes Around Damietta Promontory, Egypt, Using RS/GIS
    Esmail, Mohammed
    Ali, Masria
    Negm, Abdelazim
    12TH INTERNATIONAL CONFERENCE ON HYDROINFORMATICS (HIC 2016) - SMART WATER FOR THE FUTURE, 2016, 154 : 936 - 942
  • [44] Analysis of the future land cover change in Beijing using CA-Markov chain model
    Huang, Yingchun
    Yang, Bogang
    Wang, Miao
    Liu, Bowen
    Yang, Xudong
    ENVIRONMENTAL EARTH SCIENCES, 2020, 79 (02)
  • [45] Land Use and Land Cover Change Assessment and Future Predictions in the Matenchose Watershed, Rift Valley Basin, Using CA-Markov Simulation
    Mathewos, Markos
    Lencha, Semaria Moga
    Tsegaye, Misgena
    LAND, 2022, 11 (10)
  • [46] Land/use land /cover dynamics and future scenario of Mayurakshi river basin by random forest and CA-Markov model
    Soren, D. D. L.
    Roy, K. C.
    Biswas, B.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2024,
  • [47] USING CA-MARKOV MODEL TO MODEL THE SPATIOTEMPORAL CHANGE OF LAND USE/COVER IN FUXIAN LAKE FOR DECISION SUPPORT
    Li, S. H.
    Jin, B. X.
    Wei, X. Y.
    Jiang, Y. Y.
    Wang, J. L.
    ISPRS INTERNATIONAL WORKSHOP ON SPATIOTEMPORAL COMPUTING, 2015, : 163 - 168
  • [48] Current practices and challenges for modelling past and future land use and land cover changes in mountainous regions
    Jacek Kozak
    Urs Gimmi
    Thomas Houet
    Janine Bolliger
    Regional Environmental Change, 2017, 17 : 2187 - 2191
  • [49] Current practices and challenges for modelling past and future land use and land cover changes in mountainous regions
    Kozak, Jacek
    Gimmi, Urs
    Houet, Thomas
    Bolliger, Janine
    REGIONAL ENVIRONMENTAL CHANGE, 2017, 17 (08) : 2187 - 2191
  • [50] Assessing the Hydrological Response to Land Use Changes Linking SWAT and CA-Markov Models
    Ren, Chongfeng
    Deng, Xiaokai
    Zhang, Hongbo
    Yu, Linghui
    HYDROLOGICAL PROCESSES, 2024, 38 (11)