Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques

被引:239
作者
Mansour, Shawky [1 ,3 ]
Al-Belushi, Mohammed [2 ]
Al-Awadhi, Talal [1 ]
机构
[1] Sultan Qaboos Univ, Coll Arts & Social Sci, Dept Geog, POB 42 Al Khod PC 123, Muscat, Oman
[2] Sultan Qaboos Univ, Coll Arts & Social Sci, Dept Archaeol, Muscat, Oman
[3] Alexandria Univ, Fac Arts, Dept Geog & GIS, Alexandria, Egypt
关键词
GIS; CA-Markov; Simulation; Urban expansion; Mountainous cities; Oman; CELLULAR-AUTOMATA MODELS; ENVIRONMENTAL-IMPACT; URBAN-GROWTH; LANDSCAPE DYNAMICS; ECOSYSTEM SERVICES; URBANIZATION; CHAIN; REGION; AREA; METROPOLIS;
D O I
10.1016/j.landusepol.2019.104414
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As a result of the socioeconomic transformation, the rapid urban expansion of cities and towns in the Gulf Cooperation Council (GCC) states has predominately led to tremendous pressure on the limited natural resources and loss of productive lands. Indeed, the spatial patterns of urbanisation and their impacts on mountain resources and environment have received little attention, particularly in Oman. Predicting urban growth in the mountainous cities has the potential to better understand the interaction between the spatial growth patterns and the mountain topography. This study aims to analyse spatiotemporal dynamics of land use/land cover (LULC) (2008-2018) and simulate urban expansion (2008-2038) in Nizwa city, Al Dakhliyah governorate, Oman. Cellular Automata (CA)-Markov and geospatial techniques were utilised to assess and project urban growth and land cover changes. The analysis was based on three maps of LULC at equal intervals derived from satellite imageries: Landsat TM for 1998, 2008 and 2018, along with topographic spatial layers (elevation, aspects, and terrain slopes) derived from the ASTER digital elevation model. In addition, other spatial para. meters (population density, proximity to urban centres, and proximity to major roads,) were incorporated in the simulation process. The findings revealed that the actual LULC change during 2008-2018 was 12,014 ha of net urban growth (418.5 % change), while the simulated change was expected to be 14,985 ha by 2028, with a total of 37,465 ha increase in the built-up area and urban growth by 2038. Although the topographic variability will control LULC changes, the urban expansion overly will occupy the arable land across the valleys along with the flat areas. During the next two decades, the built-up areas will dominant, with a large percentage of vacant land (net loss 12,813 ha) and vegetation cover (net loss 35 ha) will be gradually converted into residential land use. The output of the simulations in this research could serve not only as spatial guidelines for monitoring future trends of LULC dynamics, but also address the threats and deteriorates of urban sustainability in the Omani mountainous cities. Furthermore, identifying bare soils and vegetation areas that are susceptible to urbanisation is of value for the national strategy of future urban planning in Oman.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Prediction of land use and land cover changes (LULC) and urban growth analysis in Dhaka Metropolitan Area (DMA) using CA-Markov model and geospatial techniques
    Md. Kausar Hossein
    Azom Ahmed
    Muhammad Jasim Uddin
    A.S.M. Saifullah
    Md. Abu Hamjalal Babu
    Tasrin Sarker
    Arabian Journal of Geosciences, 2023, 16 (8)
  • [22] APPLICATION OF CA-MARKOV MODEL AND LAND USE/LAND COVER CHANGES IN MALACCA RIVER WATERSHED, MALAYSIA
    Hua, A. K.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2017, 15 (04): : 605 - 622
  • [23] Predicting land use/land cover changes in the Santchou Wildlife Reserve (Santchou, West-Cameroon) using a CA-Markov model
    Fogang, Lyrette Feudjio
    Tiomo, Idriss Franklin
    Kamga, Borel Yanick
    Kpoumie, Hubert Mounmemi
    Nkondjoua, Armand Delanot Tanougong
    Nguetsop, Victor Francois
    Zapfack, Louis
    TREES FORESTS AND PEOPLE, 2023, 14
  • [24] Spatiotemporal Monitoring and Prediction of Land Use/Land Cover Changes Using CA-Markov Chain Model: A Case Study in Orkhon Province, Mongolia
    Vandansambuu, Battsengel A. B.
    Davaa, Tsolmon
    Gantumur, Byambakhuu
    Purevtseren, Myagmartseren
    Lkhagva, Otgonbayar
    Wu, Falin
    REMOTE SENSING TECHNOLOGIES AND APPLICATIONS IN URBAN ENVIRONMENTS V, 2020, 11535
  • [25] Modelling land use/cover change in Lake Mogan and surroundings using CA-Markov Chain Analysis
    Durmusoglu, Z. O.
    Tanriover, A. A.
    JOURNAL OF ENVIRONMENTAL BIOLOGY, 2017, 38 (05) : 981 - 989
  • [26] Predicting Urban Expansion and Urban Land Use Changes in Nakhon Ratchasima City Using a CA-Markov Model under Two Different Scenarios
    Chotchaiwong, Pakawan
    Wijitkosum, Saowanee
    LAND, 2019, 8 (09)
  • [27] Land change modeler and CA-Markov chain analysis for land use land cover change using satellite data of Peshawar, Pakistan
    Tariq, Aqil
    Yan, Jianguo
    Mumtaz, Faisal
    PHYSICS AND CHEMISTRY OF THE EARTH, 2022, 128
  • [28] Analysis of Land Use Land Cover (LULC) Change in a Watershed with High Urbanization Potential Using the CA-Markov Model
    Kalra, Ajay
    Banjara, Mandip
    Ghimire, Amrit
    Acharya, Kriti
    Sarker, Md. Sayeduzzaman
    Gupta, Ritu
    WORLD ENVIRONMENTAL AND WATER RESOURCES CONGRESS 2024: CLIMATE CHANGE IMPACTS ON THE WORLD WE LIVE IN, 2024, : 16 - 28
  • [29] Land Use and Land Cover Change Assessment and Future Predictions in the Matenchose Watershed, Rift Valley Basin, Using CA-Markov Simulation
    Mathewos, Markos
    Lencha, Semaria Moga
    Tsegaye, Misgena
    LAND, 2022, 11 (10)
  • [30] Future land use land cover changes in El-Fayoum governorate: a simulation study using satellite data and CA-Markov model
    Atef, Islam
    Ahmed, Wael
    Abdel-Maguid, Ramadan H.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2024, 38 (02) : 651 - 664