Betti numbers of Shimura curves and arithmetic three-orbifolds

被引:2
|
作者
Fraczyk, Mikolaj [1 ]
Raimbault, Jean [2 ]
机构
[1] Alfred Renyi Inst Math, Budapest, Hungary
[2] Univ Toulouse, Inst Math Toulouse, CNRS, UPS,IMT, Toulouse, France
关键词
Shimura curves; arithmetic hyperbolic manifolds; Betti numbers; SUBGROUPS; PROOF;
D O I
10.2140/ant.2019.13.2359
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that asymptotically the first Betti number b(1) of a Shimura curve satisfies the Gauss-Bonnet equality 2 pi(b(1) - 2) = vol where vol is hyperbolic volume; equivalently 2g - 2 =(1 + o(1)) vol where g is the arithmetic genus. We also show that the first Betti number of a congruence hyperbolic 3-orbifold asymptotically vanishes relatively to hyperbolic volume, that is b(1)/vol -> 0. This generalizes previous results obtained by Fraczyk, on which we rely, and uses the same main tool, namely Benjamini-Schramm convergence.
引用
收藏
页码:2359 / 2382
页数:24
相关论文
共 11 条
  • [1] Arithmetic of Shimura curves
    ZHANG Shou-Wu Department of Mathematics
    ScienceChina(Mathematics), 2010, 53 (03) : 573 - 592
  • [2] Arithmetic of Shimura curves
    Zhang Shou-Wu
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (03) : 573 - 592
  • [3] Arithmetic of Shimura curves
    Shou-Wu Zhang
    Science China Mathematics, 2010, 53 : 573 - 592
  • [4] On the Betti numbers of compact holomorphic symplectic orbifolds of dimension four
    Lie Fu
    Grégoire Menet
    Mathematische Zeitschrift, 2021, 299 : 203 - 231
  • [5] On the Betti numbers of compact holomorphic symplectic orbifolds of dimension four
    Fu, Lie
    Menet, Gregoire
    MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (1-2) : 203 - 231
  • [6] Bounded negativity of self-intersection numbers of Shimura curves in Shimura surfaces
    Moeller, Martin
    Toledo, Domingo
    ALGEBRA & NUMBER THEORY, 2015, 9 (04) : 897 - 912
  • [7] Betti numbers of Bresinsky's curves in A4
    Mehta, Ranjana
    Saha, Joydip
    Sengupta, Indranath
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (08)
  • [8] Betti Numbers of the Tangent Cones of Monomial Space Curves
    Lan, Nguyen P. H.
    Tu, Nguyen Chanh
    Vu, Thanh
    ACTA MATHEMATICA VIETNAMICA, 2024, 49 (03) : 347 - 365
  • [9] On the Betti numbers of the tangent cones for Gorenstein monomial curves
    Mete, Pinar
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (06) : 2603 - 2613
  • [10] The kernel of Ribet's isogeny for genus three Shimura curves
    Gonzalez, Josep
    Molina, Santiago
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2016, 68 (02) : 609 - 635