Pygpc: A sensitivity and uncertainty analysis toolbox for Python']Python

被引:18
作者
Weise, Konstantin [1 ,2 ]
Possner, Lucas [3 ]
Mueller, Erik [3 ]
Gast, Richard [1 ]
Knoesche, Thomas R. [1 ,4 ]
机构
[1] Max Planck Inst Human Cognit & Brain Sci, Methods & Dev Grp Brain Networks, Stephanstr 1a, D-04103 Leipzig, Germany
[2] Tech Univ Ilmenau, Adv Electromagnet Grp, Helmholtzpl 2, D-98693 Ilmenau, Germany
[3] Leipzig Univ Appl Sci, Inst Elect & Biomed Informat Technol, Wachterstr 13, D-04107 Leipzig, Germany
[4] Tech Univ Ilmenau, Inst Biomed Engn & Informat, Gustav Kirchhoff Str 2, D-98693 Ilmenau, Germany
关键词
Sensitivity analysis; Uncertainty analysis; Polynomial chaos; DYNAMIC-MODELS; ADAPTATION; EEG;
D O I
10.1016/j.softx.2020.100450
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a novel Python package for the uncertainty and sensitivity analysis of computational models. The mathematical background is based on the non -intrusive generalized polynomial chaos method allowing one to treat the investigated models as black box systems, without interfering with their legacy code. Pygpc is optimized to analyze models with complex and possibly discontinuous transfer functions that are computationally costly to evaluate. The toolbox determines the uncertainty of multiple quantities of interest in parallel, given the uncertainties of the system parameters and inputs. It also yields gradient -based sensitivity measures and Sobol indices to reveal the relative importance of model parameters. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] PAVLIB4SWAT: a Python']Python analysis and visualization tool and library based on Kepler.gl for SWAT models
    Lin, Qiaoying
    Zhang, Dejian
    Wu, Jiefeng
    Fang, Yihui
    Chen, Xingwei
    Lin, Bingqing
    JOURNAL OF HYDROINFORMATICS, 2024, 26 (01) : 189 - 202
  • [32] Programming an Offline-Analyzer of Motor Imagery Signals via Python']Python Language
    Alonso-Valerdi, Luz Maria
    Sepulveda, Francisco
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 7861 - 7864
  • [33] kCSD-python']python, reliable current source density estimation with quality control
    Chintaluri, Chaitanya
    Bejtka, Marta
    Sredniawa, Wladyslaw
    Czerwinski, Michal
    Dzik, Jakub M.
    Jedrzejewska-Szmek, Joanna
    Wojcik, Daniel K.
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (03)
  • [34] EEGraph: An open-source Python']Python library for modeling electroencephalograms using graphs
    Maitin, Ana M.
    Nogales, Alberto
    Chazarra, Pedro
    Jose Garcia-Tejedor, Alvaro
    NEUROCOMPUTING, 2023, 519 : 127 - 134
  • [35] Python']Python-LTSpice Framework for Impact Study of PCB Parasitics on Conducted Emission
    Lopera, Jose Romero
    Gsoels, Patrick D.
    Hackl, Herbert
    Martin, Stoiber
    Auinger, Bernhard
    2024 IEEE 21ST INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE, PEMC 2024, 2024,
  • [36] PhysioEx: a new Python']Python library for explainable sleep staging through deep learning
    Gagliardi, Guido
    Luca Alfeo, Antonio
    Cimino, Mario G. C. A.
    Valenza, Gaetano
    De Vos, Maarten
    PHYSIOLOGICAL MEASUREMENT, 2025, 46 (02)
  • [37] Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty
    Helton, JC
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1997, 57 (1-4) : 3 - 76
  • [38] Sensitivity and uncertainty analysis for flexoelectric nanostructures
    Hamdia, Khader M.
    Ghasemi, Hamid
    Zhuang, Xiaoying
    Alajlan, Naif
    Rabczuk, Timon
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 337 : 95 - 109
  • [39] Uncertainty and sensitivity analysis to complex systems
    Zhu, Yueying
    Wang, Qiuping Alexandre
    Li, Wei
    Cai, Xu
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2017, 28 (08):
  • [40] Sharing an Open Stimulation System for Auditory EEG Experiments Using Python']Python, Raspberry Pi, and HifiBerry
    Corneyllie, Alexandra
    Perrin, Fabien
    Heine, Lizette
    ENEURO, 2021, 8 (04)