Pygpc: A sensitivity and uncertainty analysis toolbox for Python']Python

被引:18
|
作者
Weise, Konstantin [1 ,2 ]
Possner, Lucas [3 ]
Mueller, Erik [3 ]
Gast, Richard [1 ]
Knoesche, Thomas R. [1 ,4 ]
机构
[1] Max Planck Inst Human Cognit & Brain Sci, Methods & Dev Grp Brain Networks, Stephanstr 1a, D-04103 Leipzig, Germany
[2] Tech Univ Ilmenau, Adv Electromagnet Grp, Helmholtzpl 2, D-98693 Ilmenau, Germany
[3] Leipzig Univ Appl Sci, Inst Elect & Biomed Informat Technol, Wachterstr 13, D-04107 Leipzig, Germany
[4] Tech Univ Ilmenau, Inst Biomed Engn & Informat, Gustav Kirchhoff Str 2, D-98693 Ilmenau, Germany
关键词
Sensitivity analysis; Uncertainty analysis; Polynomial chaos; DYNAMIC-MODELS; ADAPTATION; EEG;
D O I
10.1016/j.softx.2020.100450
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a novel Python package for the uncertainty and sensitivity analysis of computational models. The mathematical background is based on the non -intrusive generalized polynomial chaos method allowing one to treat the investigated models as black box systems, without interfering with their legacy code. Pygpc is optimized to analyze models with complex and possibly discontinuous transfer functions that are computationally costly to evaluate. The toolbox determines the uncertainty of multiple quantities of interest in parallel, given the uncertainties of the system parameters and inputs. It also yields gradient -based sensitivity measures and Sobol indices to reveal the relative importance of model parameters. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Uncertainpy: A Python']Python Toolbox for Uncertainty Quantification and Sensitivity Analysis in Computational Neuroscience
    Tennoe, Simen
    Halnes, Geir
    Einevoll, Gaute T.
    FRONTIERS IN NEUROINFORMATICS, 2018, 12
  • [2] A python']python framework for environmental model uncertainty analysis
    White, Jeremy T.
    Fienen, Michael N.
    Doherty, John E.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2016, 85 : 217 - 228
  • [3] Wyrm: A Brain-Computer Interface Toolbox in Python']Python
    Venthur, Bastian
    Daehne, Sven
    Hoehne, Johannes
    Heller, Hendrik
    Blankertz, Benjamin
    NEUROINFORMATICS, 2015, 13 (04) : 471 - 486
  • [4] NeuroRA: A Python']Python Toolbox of Representational Analysis From Multi-Modal Neural Data
    Lu, Zitong
    Ku, Yixuan
    FRONTIERS IN NEUROINFORMATICS, 2020, 14
  • [5] Gumpy: a Python']Python toolbox suitable for hybrid brain-computer interfaces
    Tayeb, Zied
    Waniek, Nicolai
    Fedjaev, Juri
    Ghaboosi, Nejla
    Rychly, Leonard
    Widderich, Christian
    Richter, Christoph
    Braun, Jonas
    Saveriano, Matteo
    Cheng, Gordon
    Conradt, Joerg
    JOURNAL OF NEURAL ENGINEERING, 2018, 15 (06)
  • [6] MindLink-Eumpy: An Open-Source Python']Python Toolbox for Multimodal Emotion Recognition
    Li, Ruixin
    Liang, Yan
    Liu, Xiaojian
    Wang, Bingbing
    Huang, Wenxin
    Cai, Zhaoxin
    Ye, Yaoguang
    Qiu, Lina
    Pan, Jiahui
    FRONTIERS IN HUMAN NEUROSCIENCE, 2021, 15
  • [7] Wyrm: A Brain-Computer Interface Toolbox in Python
    Bastian Venthur
    Sven Dähne
    Johannes Höhne
    Hendrik Heller
    Benjamin Blankertz
    Neuroinformatics, 2015, 13 : 471 - 486
  • [8] DetPy (Differential Evolution Tools): A Python']Python toolbox for solving optimization problems using differential evolution
    Zielinski, Blazej
    Sciegienny, Szymon
    Orlicki, Hubert
    Ksiazek, Wojciech
    SOFTWAREX, 2025, 29
  • [9] AUGMECON-Py: A Python']Python framework for multi-objective linear optimisation under uncertainty
    Forouli, Aikaterini
    Pagonis, Anastasios
    Nikas, Alexandros
    Koasidis, Konstantinos
    Xexakis, Georgios
    Koutsellis, Themistoklis
    Petkidis, Christos
    Doukas, Haris
    SOFTWAREX, 2022, 20
  • [10] mumpce_py: A Python']Python Implementation of the Method of Uncertainty Minimization Using Polynomial Chaos Expansions
    Sheen, David A.
    JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2017, 122