Mixing enhancement of electrokinetically-driven non-Newtonian fluids in microchannel with patterned blocks

被引:39
作者
Cho, Ching-Chang [1 ]
Chen, Chieh-Li [2 ]
Chen, Cha'o-Kuang [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Mech Engn, Tainan 70101, Taiwan
[2] Natl Cheng Kung Univ, Dept Aeronaut & Astronaut, Tainan 70101, Taiwan
关键词
Non-Newtonian fluid; Power-law fluid; Electroosmotic flow; Passive mixer; Micromixer; POWER-LAW FLUIDS; 3-DIMENSIONAL SERPENTINE MICROCHANNEL; ELECTROOSMOTIC FLOW; HETEROGENEOUS SURFACE; SLIT MICROCHANNEL; ZETA POTENTIALS; MIXER; CHARGE;
D O I
10.1016/j.cej.2012.02.083
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A numerical investigation is performed into the mixing characteristics of electrokinetically-driven non-Newtonian fluids in microchannels containing patterned blocks. In performing the simulations, the rheological behavior of the fluid is described using a power-law model. Two different types of patterned blocks are considered, namely rectangular and wavy. The effects of the geometry parameters of the patterned blocks and the flow behavior index in the power-law model on the mixing efficiency within the microchannel are systematically explored. The results show that the rectangular patterned blocks yield a better mixing performance than the wavy patterned blocks. However, for both types of block, the mixing efficiency can be improved by increasing the width and length of the blocks and extending the total length of the block region. In addition, the results show that the flow behavior index in the power-low model has a significant effect on the mixing performance. Specifically, the volumetric flow rate increases with a decreasing flow behavior index, and therefore results in a poorer mixing performance. It is shown that a heterogeneous patterning of the zeta potential on the upper surfaces of the rectangular and wavy blocks prompts the formation of local flow recirculations, and therefore improves the mixing efficiency. In addition, it is shown that the mixing performance improves with an increasing magnitude of the heterogeneous surface zeta potential. Overall, the results show that the mixing efficiency of non-Newtonian fluids with a low flow behavior index can be improved by utilizing blocks with an appropriate geometry, applying a heterogeneous distribution of the surface zeta potential, and increasing the magnitude of the zeta potential. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 140
页数:9
相关论文
共 37 条
[1]   ELCTROOSMOSIS ON INHOMOGENEOUSLY CHARGED SURFACES [J].
AJDARI, A .
PHYSICAL REVIEW LETTERS, 1995, 75 (04) :755-758
[2]   Parametric study on mixing of two fluids in a three-dimensional serpentine microchannel [J].
Ansari, Mubashshir Ahmad ;
Kim, Kwang-Yong .
CHEMICAL ENGINEERING JOURNAL, 2009, 146 (03) :439-448
[3]   Combined electroosmotically and pressure driven flow of power-law fluids in a slit microchannel [J].
Babaie, Ashkan ;
Sadeghi, Arman ;
Saidi, Mohammad Hassan .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2011, 166 (14-15) :792-798
[4]   Electrokinetic flow of non-Newtonian fluids in microchannels [J].
Berli, Claudio L. A. ;
Olivares, Maria L. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2008, 320 (02) :582-589
[5]   Heterogeneous surface charge enhanced micromixing for electrokinetic flows [J].
Biddiss, E ;
Erickson, D ;
Li, DQ .
ANALYTICAL CHEMISTRY, 2004, 76 (11) :3208-3213
[6]   Electrokinetically-driven flow mixing in microchannels with wavy surface [J].
Chen, Cha'o-Kuang ;
Cho, Ching-Chang .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 312 (02) :470-480
[7]  
Chen CL, 2009, INT J NONLIN SCI NUM, V10, P1545
[8]   Electrokinetically-driven non-Newtonian fluid flow in rough microchannel with complex-wavy surface [J].
Cho, Ching-Chang ;
Chen, Chieh-Li ;
Chen, Cha'o-Kuang .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2012, 173 :13-20
[9]   A novel microfluidic mixer using aperiodic perturbation flows [J].
Cho, Ching-Chang ;
Chen, Chieh-Li ;
Tsai, Rei-Tang ;
Chen, Cha'o-Kuang .
CHEMICAL ENGINEERING SCIENCE, 2011, 66 (23) :6159-6167
[10]   Enhanced micromixing of electroosmotic flows using aperiodic time-varying zeta potentials [J].
Cho, Ching-Chang ;
Ho, Ching-Jenq ;
Chen, Cha'o-Kuang .
CHEMICAL ENGINEERING JOURNAL, 2010, 163 (03) :180-187