Monitoring Polymer-Enhanced Foam Displacements Through Heterogeneous Porous Media: A Pore-Scale Study

被引:7
|
作者
Ardakani, Alireza Ghaderi [1 ]
Mohammadi Alamooti, Amir Hossein [2 ]
Rasaei, Mohammad Reza [1 ]
Javadi, Aliyar [1 ,3 ]
Ghazanfari, Mohammad Hossein [2 ]
Davarzani, Hossein [4 ]
机构
[1] Univ Tehran, Dept Chem Engn, Inst Petr Engn, Tehran 14395515, Iran
[2] Sharif Univ Technol, Dept Chem & Petr Engn, Tehran 113659465, Iran
[3] Tech Univ Dresden, Inst Proc Engn & Environm Technol, D-01062 Dresden, Germany
[4] Bur Rech Geol & Minieres BRGM, Direct Eau Environm & Ecotechnol D3E, F-45100 Orleans, France
关键词
oil; gas reservoirs; petroleum engineering; petroleum transport; pipelines; multiphase flow; underground injection and storage; HEAVY OIL-RECOVERY; SURFACE-TENSION; STABILITY; BULK; FLOW; FORMULATION; GENERATION;
D O I
10.1115/1.4046943
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this work, fundamental understanding of phase displacements involved in polymer-enhanced air foam is investigated which was not well discussed in the available literature. To do this, a series of foam injection experiments were performed on heterogeneous rock-look-alike micromodels in the presence and absence of a single fracture. The models were initially saturated with crude oil and experienced post polymer-enhanced foam injection process. We observed for the first time the mechanism of synergetic upstream snap-off and lamella division in the vicinity of the area where the permeability contrast was obvious. Observations showed two opposite effects of oil emulsioning and bubble coalescence when gas bubbles came in contact with oil in pore bodies. Fractal dimension analysis of front polymer-enhanced foam illustrates a noticeable improvement in oil displacement. Primary enhanced foam injection to oil saturated micromodel causes bubble coarsening which leads to less efficient oil displacement process. The lower the polymer concentration, the less stable the foam; consequently, the less efficient oil displacement is observed. Lower viscosity oil results in lower recovery efficiency as the stability of foam decreases. To shed light on the dynamic behavior of polymer-surfactant interface, some dynamic surface tension tests were conducted. Results showed that repellency between surfactant and polymer molecules causes surfactant molecules to be present on the surface making the initial dynamic interfacial tension (IFT) decrease. Results of this work help to better understand how polymer could enhance the efficiency of foam floods in heterogeneous systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Synergistic effect of polymer and graphene oxide nanocomposite in heterogeneous layered porous media: a pore-scale EOR Study
    Iravani, M.
    Simjoo, M.
    Molaei, A. H.
    JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2025, 15 (01)
  • [12] Core- and pore-scale investigation on the migration and plugging of polymer microspheres in a heterogeneous porous media
    Chen, Xin
    Li, Yiqiang
    Liu, Zheyu
    Li, Xianjie
    Zhang, Jian
    Zhang, Han
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 195
  • [13] Assessing Rheology Effects and Pore Space Complexity in Polymer Flow Through Porous Media: A Pore-Scale Simulation Study
    Amiri, Mehdi
    Qajar, Jafar
    Raeini, Ali Q.
    Raoof, Amir
    WATER RESOURCES RESEARCH, 2024, 60 (05)
  • [14] Pore-scale study of the effect of bifurcated fracture on spontaneous imbibition in heterogeneous porous media
    He, Zhennan
    Liang, Fachun
    Meng, Jia
    PHYSICS OF FLUIDS, 2022, 34 (07)
  • [15] Pore-scale simulation of adaptive pumping remediation in heterogeneous porous media
    He, Zhennan
    Liang, Fachun
    Meng, Jia
    Wang, Hongyu
    PHYSICS OF FLUIDS, 2022, 34 (02)
  • [16] Pore-Scale Study on Convective Drying of Porous Media
    Fei, Linlin
    Qin, Feifei
    Zhao, Jianlin
    Derome, Dominique
    Carmeliet, Jan
    LANGMUIR, 2022, 38 (19) : 6023 - 6035
  • [17] Pore-scale statistics of flow and transport through porous media
    Aramideh, Soroush
    Vlachos, Pavlos P.
    Ardekani, Arezoo M.
    PHYSICAL REVIEW E, 2018, 98 (01)
  • [18] Parallel simulations of pore-scale flow through porous media
    Morris, JP
    Zhu, Y
    Fox, PJ
    COMPUTERS AND GEOTECHNICS, 1999, 25 (04) : 227 - 246
  • [19] A pore-scale numerical model for flow through porous media
    Zhu, Y
    Fox, PJ
    Morris, JP
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 1999, 23 (09) : 881 - 904
  • [20] Pore-scale simulation of laminar flow through porous media
    Piller, M.
    Casagrande, D.
    Schena, G.
    Santini, M.
    31ST UIT (ITALIAN UNION OF THERMO-FLUID-DYNAMICS) HEAT TRANSFER CONFERENCE 2013, 2014, 501