Isoform-specific inhibition of RORα-mediated transcriptional activation by human FOXP3

被引:191
作者
Du, Jianguang [1 ]
Huang, Chunjian [1 ]
Zhou, Baohua [1 ]
Ziegler, Steven F. [1 ,2 ]
机构
[1] Benaroya Res Inst Virginia Mason, Program Immunol, Seattle, WA 98101 USA
[2] Univ Washington, Sch Med, Dept Immunol, Seattle, WA 98195 USA
关键词
D O I
10.4049/jimmunol.180.7.4785
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
FOXP3 is a forkhead family transcriptional repressor important for the development and function of CD4(+)CD25(+) regulatory T cells. In humans, FOXP3 is expressed as two isoforms, a full-length form and a smaller form lacking exon 2. These two isoforms are expressed in approximately equal amounts in circulating regulatory T cells, and are induced equally in freshly activated CD4(+)CD25(-) T cells. Herein, we show that FOXP3 interacts with retinoic acid receptor-related orphan receptor (ROR)alpha, and that this interaction inhibits transcriptional activation mediated by ROR alpha. Full-length FOXP3, but not the isoform lacking exon 2, interacts with ROR alpha, and the region of FOXP3 involved in the interaction is encoded by exon 2. Mutation of the LxxLL motif in FOXP3, located in exon 2, abolished interaction and repression by FOXP3. Additionally, the inhibition of ROR alpha by FOXP3 does not require an intact forkhead domain, demonstrating a mode of FOXP3 function that is independent of DNA binding. Interestingly, expression of ROR alpha in T cells leads to the expression of genes that define Th17 cells, and the expression of each of these gene was inhibited by coexpression of full-length, but not Delta Ex2, FOXP3. These data expand the possible targets of FOXP3-mediated repression and demonstrate functional differences between FOXP3 isoforms.
引用
收藏
页码:4785 / 4792
页数:8
相关论文
共 46 条
[1]   The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs [J].
Allan, SE ;
Passerini, L ;
Bacchetta, R ;
Crellin, N ;
Dai, MY ;
Orban, PC ;
Ziegler, SF ;
Roncarolo, MG ;
Levings, MK .
JOURNAL OF CLINICAL INVESTIGATION, 2005, 115 (11) :3276-3284
[2]   Disruption of retinoid-related orphan receptor β changes circadian behavior, causes retinal degeneration and leads to vacillans phenotype in mice [J].
André, E ;
Conquet, F ;
Steinmayr, M ;
Stratton, SC ;
Porciatti, V ;
Becker-André, M .
EMBO JOURNAL, 1998, 17 (14) :3867-3877
[3]   Coactivators for the orphan nuclear receptor RORα [J].
Atkins, GB ;
Hu, X ;
Guenther, MG ;
Rachez, C ;
Freedman, LP ;
Lazar, MA .
MOLECULAR ENDOCRINOLOGY, 1999, 13 (09) :1550-1557
[4]   Human CD4+CD25+ regulatory T cells [J].
Baecher-Allan, C ;
Viglietta, V ;
Hafler, DA .
SEMINARS IN IMMUNOLOGY, 2004, 16 (02) :89-97
[5]   The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3 [J].
Bennett, CL ;
Christie, J ;
Ramsdell, F ;
Brunkow, ME ;
Ferguson, PJ ;
Whitesell, L ;
Kelly, TE ;
Saulsbury, FT ;
Chance, PF ;
Ochs, HD .
NATURE GENETICS, 2001, 27 (01) :20-21
[6]   Foxp3 interacts with nuclear factor of activated T cells and NF-κB to repress cytokine gene expression and effector functions of T helper cells [J].
Bettelli, E ;
Dastrange, M ;
Oukka, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (14) :5138-5143
[7]   Natural versus adaptive regulatory T cells [J].
Bluestone, JA ;
Abbas, AK .
NATURE REVIEWS IMMUNOLOGY, 2003, 3 (03) :253-257
[8]   The mutant leucine-zipper domain impairs both dimerization and suppressive function of Foxp3 in T cells [J].
Chae, Wook-Jin ;
Henegariu, Octavian ;
Lee, Sang-Kyou ;
Bothwell, Alfred L. M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (25) :9631-9636
[9]   JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome [J].
Chatila, TA ;
Blaeser, F ;
Ho, N ;
Lederman, HM ;
Voulgaropoulos, C ;
Helms, C ;
Bowcock, AM .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 106 (12) :R75-R81
[10]   Structure and specificity of nuclear receptor-coactivator interactions [J].
Darimont, BD ;
Wagner, RL ;
Apriletti, JW ;
Stallcup, MR ;
Kushner, PJ ;
Baxter, JD ;
Fletterick, RJ ;
Yamamoto, KR .
GENES & DEVELOPMENT, 1998, 12 (21) :3343-3356