Symmetry of solitary water waves with vorticity

被引:0
作者
Hur, Vera Mikyoung [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
water waves; solitary; vorticity; symmetry; moving planes; maximum principles;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Symmetry and monotonicity properties of solitary water-waves of positive elevation with supercritical values of parameter are established for an arbitrary vorticity. The proof uses the detailed knowledge of asymptotic decay of supercritical solitary waves at infinity and the method of moving planes.
引用
收藏
页码:491 / 509
页数:19
相关论文
共 20 条
[1]  
AMICK CJ, 1981, ARCH RATION MECH AN, V76, P9, DOI 10.1007/BF00250799
[2]  
BEALE JT, 1977, COMMUN PUR APPL MATH, V5, P237
[3]   Exact steady periodic water waves with vorticity [J].
Constantin, A ;
Strauss, W .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (04) :481-527
[4]   SYMMETRY OF FREE-SURFACE FLOWS [J].
CRAIG, W ;
STERNBERG, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 118 (01) :1-36
[5]   SYMMETRY OF SOLITARY WAVES [J].
CRAIG, W ;
STERNBERG, P .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1988, 13 (05) :603-633
[6]   THE EXISTENCE OF SOLITARY WAVES [J].
FRIEDRICHS, KO ;
HYERS, DH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1954, 7 (03) :517-550
[7]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[8]  
Gilbarg D., 2001, ELLIPTIC PARTIAL DIF, DOI DOI 10.1007/978-3-642-61798-0
[9]  
Herzog J.O., 1964, P AM MATH SOC, V15, P721
[10]  
Hille E., 1969, LECT ORDINARY DIFFER