Contribution of neodymium optical spectroscopy to the crystal growth study of a silicate apatite in a glassy matrix

被引:10
作者
de Ligny, D. [1 ,2 ,3 ]
Panczer, G. [1 ,2 ,3 ]
Caurant, D. [4 ]
Neuville, D. R. [5 ]
机构
[1] Univ Lyon, F-69003 Lyon, France
[2] Univ Lyon 1, F-69622 Villeurbanne, France
[3] CNRS, UMR5620, Lab Physicochim Mat Luminescents, F-69622 Villeurbanne, France
[4] ENSCP, CNRS, UMR 7574, Lab Chim Mat Condensee Paris, F-75231 Paris, France
[5] IPGP, CNRS, F-75005 Paris, France
关键词
nuclear waste glasses; glass-ceramic; borosilicate; rare-earth ions;
D O I
10.1016/j.optmat.2007.07.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Neodymium migration from the glass to the unique crystal phase, Ca(2)Nd(8)(SiO(4))(6)O(2) apatite, was followed by absorption ((4)I(9/2) -> (2)P(1/2) transition) and emission ((4)F(3/2) -> (4)I(9/2) transition) spectroscopy in aluminoborosilicate glass-ceramics prepared at various temperatures. Comparison of these glass-ceramics showed that ordering of Ca(2+) and Nd(3+) ions in the 6h and 4f sites of the silicate apatite structure progressively increased when the crystallisation temperature T(c) is raised from 950 to 1450 K. Taking advantage of the emission quenching in apatite crystals due to high Nd(3+) ions concentration, the residual glass surrounding these crystals was probed. The highest neodymium depletion in the glassy phase was obtained after heat treatment at T(c) = 1300 K. Neodymium was found to be a nucleation agent for apatite crystallization. The nucleation mechanism of this phase at low temperature begins by the migration of Nd(3+) ions from glass sites to the apatite 4f sites that are structurally close. At higher temperature, due to the increasing thermal energy available during crystal growth, the proportion of Nd(3+) ions incorporated in the apatite 6h site increased. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1694 / 1698
页数:5
相关论文
共 16 条
[1]   Development and characterization of rare earth-rich glassy matrices envisaged for the immobilization of concentrated nuclear waste solutions [J].
Bardez, I. ;
Caurant, D. ;
Dussossoy, J. L. ;
Loiseau, P. ;
Gervais, C. ;
Ribot, F. ;
Neuville, D. R. ;
Baffier, N. ;
Fillett, C. .
NUCLEAR SCIENCE AND ENGINEERING, 2006, 153 (03) :272-284
[2]  
Bardez I, 2005, PHYS CHEM GLASSES, V46, P320
[3]  
BARDEZ I, 2004, THESIS U PARIS 4 FRA
[4]   Crystallization of neodymium-rich phases in silicate glasses developed for nuclear waste immobilization [J].
Caurant, D. ;
Majerus, O. ;
Loiseau, P. ;
Bardez, I. ;
Baffier, N. ;
Dussossoy, J. L. .
JOURNAL OF NUCLEAR MATERIALS, 2006, 354 (1-3) :143-162
[5]  
DELIGNY D, 2004, ATALANTE 2004 ADV FU
[6]   The immobilization of high level radioactive wastes using ceramics and glasses [J].
Donald, IW ;
Metcalfe, BL ;
Taylor, RNJ .
JOURNAL OF MATERIALS SCIENCE, 1997, 32 (22) :5851-5887
[7]   AN X-RAY AND NEUTRON POWDER DIFFRACTION STUDY OF THE CA2+XND8-X(SIO4)6O2-0.5X SYSTEM [J].
FAHEY, JA ;
WEBER, WJ ;
ROTELLA, FJ .
JOURNAL OF SOLID STATE CHEMISTRY, 1985, 60 (02) :145-158
[8]   RARE-EARTH SILICATES WITH APATITE STRUCTURE [J].
FELSCHE, J .
JOURNAL OF SOLID STATE CHEMISTRY, 1972, 5 (02) :266-&
[9]   Titanate-based ceramics for separated long-lived radionuclides [J].
Fillet, C ;
Advocat, T ;
Bart, F ;
Leturcq, G ;
Rabiller, H .
COMPTES RENDUS CHIMIE, 2004, 7 (12) :1165-1172
[10]   HYPERSENSITIVITY AND NEPHELAUXETIC EFFECT OF ND(III) IN SODIUM BORATE GLASSES [J].
GATTERER, K ;
PUCKER, G ;
FRITZER, HP ;
ARAFA, S .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1994, 176 (2-3) :237-246