Analytical Modeling of Wind Farms: A New Approach for Power Prediction

被引:264
作者
Niayifar, Amin [1 ,2 ]
Porte-Agel, Fernando [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Wind Engn & Renewable Energy Lab WIRE, EPFL ENAC IIE WIRE, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Stream Biofilm & Ecosyst Res Lab SBER, EPFL ENAC IIE SBER, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
analytical model; Gaussian velocity deficit; turbulence intensity; velocity deficit superposition; wake growth rate; wind farm power production; TURBINE WAKES; TURBULENCE CHARACTERISTICS; LOSSES; OUTPUT; FLOW;
D O I
10.3390/en9090741
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wind farm power production is known to be strongly affected by turbine wake effects. The purpose of this study is to develop and test a new analytical model for the prediction of wind turbine wakes and the associated power losses in wind farms. The new model is an extension of the one recently proposed by Bastankhah and Porte-Agel for the wake of stand-alone wind turbines. It satisfies the conservation of mass and momentum and assumes a self-similar Gaussian shape of the velocity deficit. The local wake growth rate is estimated based on the local streamwise turbulence intensity. Superposition of velocity deficits is used to model the interaction of the multiple wakes. Furthermore, the power production from the wind turbines is calculated using the power curve. The performance of the new analytical wind farm model is validated against power measurements and large-eddy simulation (LES) data from the Horns Rev wind farm for a wide range of wind directions, corresponding to a variety of full-wake and partial-wake conditions. A reasonable agreement is found between the proposed analytical model, LES data, and power measurements. Compared with a commonly used wind farm wake model, the new model shows a significant improvement in the prediction of wind farm power.
引用
收藏
页数:13
相关论文
共 38 条
[1]  
Abkar M., 2016, J TURBUL, V17, P1
[2]   Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study [J].
Abkar, Mahdi ;
Porte-Agel, Fernando .
PHYSICS OF FLUIDS, 2015, 27 (03)
[3]   A new wind-farm parameterization for large-scale atmospheric models [J].
Abkar, Mahdi ;
Porte-Agel, Fernando .
JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2015, 7 (01)
[4]   Mean and turbulent kinetic energy budgets inside and above very large wind farms under conventionally-neutral condition [J].
Abkar, Mahdi ;
Porte-Agel, Fernando .
RENEWABLE ENERGY, 2014, 70 :142-152
[5]   The Effect of Free-Atmosphere Stratification on Boundary-Layer Flow and Power Output from Very Large Wind Farms [J].
Abkar, Mahdi ;
Porte-Agel, Fernando .
ENERGIES, 2013, 6 (05) :2338-2361
[6]  
[Anonymous], RISM2411 RIS NAT LAB
[7]  
[Anonymous], 2010, Openwind, Theoretical Basis and Validation
[8]   Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar [J].
Barthelmie, R. J. ;
Folkerts, L. ;
Larsen, G. C. ;
Rados, K. ;
Pryor, S. C. ;
Frandsen, S. T. ;
Lange, B. ;
Schepers, G. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2006, 23 (07) :888-901
[9]   Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms [J].
Barthelmie, R. J. ;
Pryor, S. C. ;
Frandsen, S. T. ;
Hansen, K. S. ;
Schepers, J. G. ;
Rados, K. ;
Schlez, W. ;
Neubert, A. ;
Jensen, L. E. ;
Neckelmann, S. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2010, 27 (08) :1302-1317
[10]   Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore [J].
Barthelmie, R. J. ;
Hansen, K. ;
Frandsen, S. T. ;
Rathmann, O. ;
Schepers, J. G. ;
Schlez, W. ;
Phillips, J. ;
Rados, K. ;
Zervos, A. ;
Politis, E. S. ;
Chaviaropoulos, P. K. .
WIND ENERGY, 2009, 12 (05) :431-444