Biomimicked Superhydrophobic Polymeric and Carbon Surfaces

被引:20
作者
Sharma, Chandra S. [1 ,2 ,3 ]
Abhishek, Kumar [1 ,2 ]
Katepalli, Hari [1 ,2 ]
Sharma, Ashutosh [1 ,2 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, Kanpur 208016, Uttar Pradesh, India
[2] Indian Inst Technol, DST Unit Nanosci, Kanpur 208016, Uttar Pradesh, India
[3] Indian Inst Technol, Dept Chem Engn, Yeddumailaram 502205, Andhra Pradesh, India
关键词
WATER REPELLENCY; LOTUS-LEAF; NANOFIBERS; MINIATURIZATION; WETTABILITY; FABRICATION; ROUGHNESS; ADHESION; FILMS; LEGS;
D O I
10.1021/ie200369r
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
We report two direct and easy ways of fabricating stable, superhydrophobic polymeric and carbon surfaces directly by biomimicking the patterns found on natural plant leaves by micromolding and nanoimprint lithography. Two distinct classes of naturally occurring microtextures on superhydrophobic leaves were mimicked in this study, which include leaves of Elephant creeper (Argyreia Nervosa) and Nasturtium (Tropaeolum Majus). These show structural superhydrophobicity derived from high aspect ratio hairs and lower aspect ratio microtextures, respectively. Both the textures could be replicated by micromolding in different polymers, polydimethylsiloxane, polystyrene, and an organic resorcinol-formaldehyde (RF) gel. Patterned RF gel surfaces yielded superhydrophobic carbon surfaces upon pyrolysis because RF gel is a polymer precursor to glassy carbon. The nanoimprint lithography could be used for a direct transfer of the lower aspect ratio leaf patterns on the surfaces of various other polymers like poly(ethylene terephthalate) and poly(methyl methacrylate).
引用
收藏
页码:13012 / 13020
页数:9
相关论文
共 50 条
[31]   Drop Friction and Failure on Superhydrophobic and Slippery Surfaces [J].
Naga, Abhinav ;
Scarratt, Liam R. J. ;
Neto, Chiara ;
Papadopoulos, Periklis ;
Vollmer, Doris .
ACS NANO, 2025, 19 (20) :18902-18928
[32]   Superhydrophobic surfaces on brass with controllable water adhesion [J].
Wang, Zhiwei ;
Zhu, Liqun ;
Li, Weiping ;
Xu, Huiren ;
Liu, Huicong .
SURFACE & COATINGS TECHNOLOGY, 2013, 235 :290-296
[33]   Determination of the second step microstructure for superhydrophobic surfaces [J].
Zhang, Hongyun ;
Li, Wen ;
Zhang, Xiaokai ;
Miao, Fahong ;
Li, Taohai ;
Liu, Haihua .
SURFACE AND INTERFACE ANALYSIS, 2013, 45 (05) :919-929
[34]   Preparation of superhydrophobic silicon oxide nanowire surfaces [J].
Coffinier, Yannick ;
Janel, Sebastien ;
Addad, Ahmed ;
Blossey, Ralf ;
Gengembre, Leon ;
Payen, Edmond ;
Boukherroub, Rabah .
LANGMUIR, 2007, 23 (04) :1608-1611
[35]   Fluid drag reduction on superhydrophobic surfaces coated with carbon nanotube forests (CNTs) [J].
Zhou Ming ;
Li Jian ;
Wu Chunxia ;
Zhou Xiaokang ;
Cai Lan .
SOFT MATTER, 2011, 7 (09) :4391-4396
[36]   Stable hierarchical superhydrophobic surfaces based on vertically aligned carbon nanotube forests modified with conformal silicone coating [J].
Jeong, Dong-Wook ;
Shin, Ung-Hui ;
Kim, Ji Hoon ;
Kim, Soo-Hyung ;
Lee, Hyung Woo ;
Kim, Jong-Man .
CARBON, 2014, 79 :442-449
[37]   Carbon nanostructure-based superhydrophobic surfaces and coatings [J].
Saji, Viswanathan S. .
NANOTECHNOLOGY REVIEWS, 2021, 10 (01) :518-571
[38]   One-Step Modification of Superhydrophobic Surfaces by a Mussel-Inspired Polymer Coating [J].
Kang, Sung Min ;
You, Inseong ;
Cho, Woo Kyung ;
Shon, Hyun Kyong ;
Lee, Tae Geol ;
Choi, Insung S. ;
Karp, Jeffery M. ;
Lee, Haeshin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (49) :9401-9404
[39]   Electrochemical machining of superhydrophobic surfaces on mold steel substrates [J].
Song, Jinlong ;
Huang, Wenbo ;
Liu, Jiyu ;
Huang, Liu ;
Lu, Yao .
SURFACE & COATINGS TECHNOLOGY, 2018, 344 :499-506
[40]   Nanoscale Patterning of Microtextured Surfaces to Control Superhydrophobic Robustness [J].
Cha, Tae-Gon ;
Yi, Jin Woo ;
Moon, Myoung-Woon ;
Lee, Kwang-Ryeol ;
Kim, Ho-Young .
LANGMUIR, 2010, 26 (11) :8319-8326