Network pharmacology and molecular docking analysis reveals the mechanism of asiaticoside on COVID-19

被引:7
作者
Huang, Jia [1 ,2 ]
Zhou, Xiaobo [1 ]
Gong, Yiyi [2 ]
Chen, Jun [1 ]
Yang, Yali [1 ]
Liu, Ke [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Sch Med, Dept Dermatol, 639 Zhizaoju Rd, Shanghai 200011, Peoples R China
[2] Fudan Univ, Huashan Hosp, Sch Med, Dept Dermatol, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Coronavirus disease 2019 (COVID-19); asiaticoside (AS); network pharmacology; molecular docking; P38; MAPK; CORONAVIRUS;
D O I
10.21037/atm-22-51
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Asiaticoside (AS) is a saponin extracted from the traditional Chinese herbal medicine Centella Asiatica, which has the effects of reducing inflammatory infiltration and anti-oxidation in pneumonia and combating pulmonary fibrosis. We hypothesize that AS might have therapeutic potential for the treatment of the coronavirus disease 2019 (COVID-19). With the help of network pharmacology and molecular docking techniques, this study discussed the underlying molecular mechanism of AS in the treatment of COVID-19. Methods: The molecular structure of AS was obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) system. The targets of AS were achieved using PharmMapper, SwissTargetPrediction, and the Comparative Toxicogenomics Database (CTD). The targets corresponding to COVID-19 were obtained using GeneCards, Online Mendelian Inheritance in Man (OMIM), and CTD database. Then, a target protein-protein interaction (PPI) network was formed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. A network of AS, COVID-19, and their co-targets was built using Cytoscape. Afterwards, the co-targets were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Moreover, the predictions of crucial targets were further investigated by performing molecular docking with AS. Results: A total of 45 core targets of AS were found to be engaged in the pathogenesis of COVID-19. The KEGG enrichment analysis indicated that AS might be protective against COVID-19 through inflammationand immune-related signaling pathways, including interleukin-17 (IL-17) signaling, T helper 17 (Th17) cell differentiation pathway, Coronavirus disease-COVID-19, MAPK, the PI3K-Akt signaling pathway, and so on. The results of molecular docking showed that AS had a high affinity with those core targets. Conclusions: The beneficial effect of AS on COVID-19 might be through regulating multiple immune or inflammation-related targets and signaling pathways.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Network pharmacology reveals multitarget mechanism of action of drugs to be repurposed for COVID-19
    Alegria-Arcos, Melissa
    Barbosa, Tabata
    Sepulveda, Felipe
    Combariza, German
    Gonzalez, Janneth
    Gil, Carmen
    Martinez, Ana
    Ramirez, David
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [32] Network Pharmacology, Molecular Docking and Molecular Dynamics Simulation Studies of the Molecular Targets and Mechanisms of ChuanKeZhi in the Treatment of COVID-19
    Yuan, Jiaying
    Zhu, Yiqing
    Zhao, Jiayi
    Li, Li
    Zhu, Chengjie
    Chen, Mingxia
    Zhang, Yi
    Shang, Yan
    NATURAL PRODUCT COMMUNICATIONS, 2022, 17 (08)
  • [33] Exploring the potential mechanisms of Danshen against COVID-19 via network pharmacology analysis and molecular docking
    Zhang, Qiang
    Liang, Zongsuo
    Wang, Xiaoqing
    Zhang, Siyu
    Yang, Zongqi
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [34] Integrating network pharmacology and molecular docking to explore the potential mechanism of Xinguan No. 3 in the treatment of COVID-19
    Peng, Jiayan
    Zhang, Kun
    Wang, Lijie
    Peng, Fang
    Zhang, Chuantao
    Long, Kunlan
    Chen, Jun
    Zhou, Xiujuan
    Gao, Peiyang
    Fan, Gang
    OPEN CHEMISTRY, 2022, 20 (01): : 570 - 582
  • [35] Potential mechanism underlying the effect of matrine on COVID-19 patients revealed through network pharmacological approaches and molecular docking analysis
    Peng, Wenpan
    Xu, Yong
    Han, Di
    Feng, Fanchao
    Wang, Zhichao
    Gu, Cheng
    Zhou, Xianmei
    Wu, Qi
    ARCHIVES OF PHYSIOLOGY AND BIOCHEMISTRY, 2023, 129 (01) : 253 - 260
  • [36] Repurposing Ayush-64 for COVID-19: A Computational Study Based on Network Pharmacology and Molecular Docking
    Mahija, K. C.
    Nazeer, Abdul K. A.
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2022, 25 (12) : 2089 - 2102
  • [37] Exploring potential mechanisms of Suhexiang Pill against COVID-19 based on network pharmacology and molecular docking
    Li, Jialin
    Huang, Zhihong
    Lu, Shan
    Luo, Hua
    Tan, Yingying
    Ye, Peizhi
    Liu, Xinkui
    Wu, Zhishan
    Wu, Chao
    Stalin, Antony
    Wang, Haojia
    Liu, Yingying
    Shen, Liangliang
    Fan, Xiaotian
    Zhang, Bei
    Yi, Jianping
    Yao, Lu
    Xu, Yi
    Wu, Jiarui
    Duan, Xianchun
    MEDICINE, 2021, 100 (51) : E27112
  • [38] STUDY ON MECHANISM OF FANGYI QINGFEI DECOCTION AGAINST COVID-19 ASSOCIATED LUNG AND KIDNEY INJURY BASED ON NETWORK PHARMACOLOGY AND MOLECULAR DOCKING
    Zuo, Zhi
    Liao, Kai
    Liu, Huailian
    Yu, Ran
    Chen, Haiqing
    Wang, Wanpeng
    ACTA MEDICA MEDITERRANEA, 2021, 37 (04): : 1969 - 1978
  • [39] Mechanism of Compound Houttuynia Mixture as an Anti-COVID-19 Drug Based on Network Pharmacology and Molecular Docking
    Wu, Xing-Pan
    Wang, Tian-Shun
    Yuan, Zin-Xin
    Yang, Yan-Fang
    Wu, He-Zhen
    NATURAL PRODUCT COMMUNICATIONS, 2021, 16 (05)
  • [40] Network Pharmacology and Molecular Docking of Shiwei Qingwen Decoction Reveal TNF as a Potential Target for Alleviating Mild COVID-19 Symptoms
    Yang, Chen-xiong
    Ma, Shang-zhi
    Zhang, Qian
    Guo, Shu-yun
    Hu, Xiao-di
    Liu, Yan-ju
    Wen, Li
    Zhou, Zhong-shi
    NATURAL PRODUCT COMMUNICATIONS, 2022, 17 (10)