Primary ideals of finitely generated commutative cancellative monoids

被引:1
作者
Rosales, JC [1 ]
García-García, JI [1 ]
机构
[1] Univ Granada, Dept Algebra, E-18071 Granada, Spain
关键词
semigroup; ideal; primary element;
D O I
10.1016/S0024-3795(01)00321-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a characterization of primary ideals of finitely generated commutative monoids and in the case of finitely generated cancellative monoids we give an algorithmic method for deciding if an ideal is primary or not. Finally we give some properties of primary elements of a cancellative monoid and an algorithmic method for determining the primary elements of a finitely generated cancellative monoid. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:219 / 230
页数:12
相关论文
共 50 条
[41]   Derivations on ideals in commutative AW*-algebras [J].
Chilin V.I. ;
Levitina G.B. .
Siberian Advances in Mathematics, 2014, 24 (1) :26-42
[42]   IDEALS IN DIRECT PRODUCTS OF COMMUTATIVE RINGS [J].
Anderson, D. D. ;
Kintzinger, John .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 77 (03) :477-483
[43]   Properties of Rough Ideals in Commutative Rings [J].
Wang, Jiyi ;
Lin, Renbing .
2008 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2008, :612-+
[44]   Nil-ideals, J-ideals and their generalizations in commutative rings [J].
A. Mimouni .
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2023, 64 :1043-1056
[45]   On (2, r)-ideals of commutative ringsOn (2, r)-ideals of commutative ringsI. Qaralleh, A. El Khalfi [J].
Izzat Qaralleh ;
Abdelhaq El Khalfi .
Rendiconti del Circolo Matematico di Palermo Series 2, 2025, 74 (4)
[46]   Semi n-ideals of commutative rings [J].
Ece Yetkin Çelikel ;
Hani A. Khashan .
Czechoslovak Mathematical Journal, 2022, 72 :977-988
[47]   The Nil-Graph of Ideals of a Commutative Ring [J].
F. Shaveisi ;
R. Nikandish .
Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 :3-11
[48]   On quasi n-ideals of commutative rings [J].
Adam Anebri ;
Najib Mahdou ;
Emel Aslankarayiğit Uğurlu .
Czechoslovak Mathematical Journal, 2022, 72 :1133-1144
[49]   Commutative zeropotent semigroups with few prime ideals [J].
Jezek, J. ;
Kepka, T. ;
Nemec, P. .
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2011, 52 (04) :501-505
[50]   The Nil-Graph of Ideals of a Commutative Ring [J].
Shaveisi, F. ;
Nikandish, R. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 :S3-S11