Primary ideals of finitely generated commutative cancellative monoids

被引:1
作者
Rosales, JC [1 ]
García-García, JI [1 ]
机构
[1] Univ Granada, Dept Algebra, E-18071 Granada, Spain
关键词
semigroup; ideal; primary element;
D O I
10.1016/S0024-3795(01)00321-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a characterization of primary ideals of finitely generated commutative monoids and in the case of finitely generated cancellative monoids we give an algorithmic method for deciding if an ideal is primary or not. Finally we give some properties of primary elements of a cancellative monoid and an algorithmic method for determining the primary elements of a finitely generated cancellative monoid. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:219 / 230
页数:12
相关论文
共 50 条
[31]   Locally finite monoids in finitely based varieties [J].
Lee, Edmond W. H. .
LOGIC JOURNAL OF THE IGPL, 2019, 27 (05) :743-745
[32]   Special ideals in partial abelian monoids [J].
Zhi-jian Yu ;
Min-hyung Cho ;
Jun-de Wu .
Applied Mathematics-A Journal of Chinese Universities, 2010, 25 :112-116
[33]   Special ideals in partial abelian monoids [J].
Yu Zhi-jian ;
Cho Min-hyung ;
Wu Jun-de .
APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2010, 25 (01) :112-116
[34]   Special ideals in partial abelian monoids [J].
YU Zhi-jian 1 CHO Min-hyung 2 WU Jun-de 3 Department of Mathematics .
Applied Mathematics:A Journal of Chinese Universities, 2010, (01) :112-116
[35]   Ideals of noncommutative DRl-monoids [J].
Kühr, J .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2005, 55 (01) :97-111
[36]   The projection problem in commutative, positively ordered monoids [J].
Gianluca Cassese .
Semigroup Forum, 2022, 105 :374-384
[37]   Ideals and their complements in commutative semirings [J].
Ivan Chajda ;
Helmut Länger .
Soft Computing, 2019, 23 :5385-5392
[38]   Ideals and their complements in commutative semirings [J].
Chajda, Ivan ;
Laenger, Helmut .
SOFT COMPUTING, 2019, 23 (14) :5385-5392
[39]   (2, J)-IDEALS IN COMMUTATIVE RINGS [J].
Yildiz, Eda ;
Tekir, Unsal ;
Koc, Suat .
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2020, 73 (09) :1201-1209
[40]   α-Ideals in Bounded Commutative Residuated Lattices [J].
Kakeu, Ariane G. Tallee ;
Strungmann, Lutz ;
Njionou, Blaise B. Koguep ;
Lele, Celestin .
NEW MATHEMATICS AND NATURAL COMPUTATION, 2023, 19 (03) :611-630