Primary ideals of finitely generated commutative cancellative monoids

被引:1
作者
Rosales, JC [1 ]
García-García, JI [1 ]
机构
[1] Univ Granada, Dept Algebra, E-18071 Granada, Spain
关键词
semigroup; ideal; primary element;
D O I
10.1016/S0024-3795(01)00321-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a characterization of primary ideals of finitely generated commutative monoids and in the case of finitely generated cancellative monoids we give an algorithmic method for deciding if an ideal is primary or not. Finally we give some properties of primary elements of a cancellative monoid and an algorithmic method for determining the primary elements of a finitely generated cancellative monoid. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:219 / 230
页数:12
相关论文
共 50 条
  • [21] Chain conditions on commutative monoids
    Davvaz, Bijan
    Nazemian, Zahra
    [J]. SEMIGROUP FORUM, 2020, 100 (03) : 732 - 742
  • [22] Chain conditions on commutative monoids
    Bijan Davvaz
    Zahra Nazemian
    [J]. Semigroup Forum, 2020, 100 : 732 - 742
  • [23] Not all nilpotent monoids are finitely related
    Markus Steindl
    [J]. Algebra universalis, 2024, 85
  • [24] Not all nilpotent monoids are finitely related
    Steindl, Markus
    [J]. ALGEBRA UNIVERSALIS, 2024, 85 (01)
  • [25] UPPER BOUNDS FOR THE COHOMOLOGICAL DIMENSIONS OF FINITELY GENERATED MODULES OVER A COMMUTATIVE NOETHERIAN RING
    Ghasemi, Ghader
    Bahmanpour, Kamal
    A'zami, Jafar
    [J]. COLLOQUIUM MATHEMATICUM, 2014, 137 (02) : 263 - 270
  • [26] ON IDEALS OF LATTICE ORDERED MONOIDS
    Jasem, Milan
    [J]. MATHEMATICA BOHEMICA, 2007, 132 (04): : 369 - 387
  • [27] Ideals of noncommutative DRℓ-monoids
    Jan Kühr
    [J]. Czechoslovak Mathematical Journal, 2005, 55 : 97 - 111
  • [28] C*-algebras generated by cancellative semigroups
    S. A. Grigoryan
    A. F. Salakhutdinov
    [J]. Siberian Mathematical Journal, 2010, 51 : 12 - 19
  • [29] C*-algebras generated by cancellative semigroups
    Grigoryan, S. A.
    Salakhutdinov, A. F.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (01) : 12 - 19
  • [30] More on the strongly 1-absorbing primary ideals of commutative rings
    Ali Yassine
    Mohammad Javad Nikmehr
    Reza Nikandish
    [J]. Czechoslovak Mathematical Journal, 2024, 74 : 115 - 126