Primary ideals of finitely generated commutative cancellative monoids

被引:1
作者
Rosales, JC [1 ]
García-García, JI [1 ]
机构
[1] Univ Granada, Dept Algebra, E-18071 Granada, Spain
关键词
semigroup; ideal; primary element;
D O I
10.1016/S0024-3795(01)00321-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a characterization of primary ideals of finitely generated commutative monoids and in the case of finitely generated cancellative monoids we give an algorithmic method for deciding if an ideal is primary or not. Finally we give some properties of primary elements of a cancellative monoid and an algorithmic method for determining the primary elements of a finitely generated cancellative monoid. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:219 / 230
页数:12
相关论文
共 50 条
[21]   Chain conditions on commutative monoids [J].
Davvaz, Bijan ;
Nazemian, Zahra .
SEMIGROUP FORUM, 2020, 100 (03) :732-742
[22]   Chain conditions on commutative monoids [J].
Bijan Davvaz ;
Zahra Nazemian .
Semigroup Forum, 2020, 100 :732-742
[23]   Not all nilpotent monoids are finitely related [J].
Markus Steindl .
Algebra universalis, 2024, 85
[24]   Not all nilpotent monoids are finitely related [J].
Steindl, Markus .
ALGEBRA UNIVERSALIS, 2024, 85 (01)
[25]   UPPER BOUNDS FOR THE COHOMOLOGICAL DIMENSIONS OF FINITELY GENERATED MODULES OVER A COMMUTATIVE NOETHERIAN RING [J].
Ghasemi, Ghader ;
Bahmanpour, Kamal ;
A'zami, Jafar .
COLLOQUIUM MATHEMATICUM, 2014, 137 (02) :263-270
[26]   ON IDEALS OF LATTICE ORDERED MONOIDS [J].
Jasem, Milan .
MATHEMATICA BOHEMICA, 2007, 132 (04) :369-387
[27]   Ideals of noncommutative DRℓ-monoids [J].
Jan Kühr .
Czechoslovak Mathematical Journal, 2005, 55 :97-111
[28]   C*-algebras generated by cancellative semigroups [J].
S. A. Grigoryan ;
A. F. Salakhutdinov .
Siberian Mathematical Journal, 2010, 51 :12-19
[29]   C*-algebras generated by cancellative semigroups [J].
Grigoryan, S. A. ;
Salakhutdinov, A. F. .
SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (01) :12-19
[30]   More on the strongly 1-absorbing primary ideals of commutative rings [J].
Ali Yassine ;
Mohammad Javad Nikmehr ;
Reza Nikandish .
Czechoslovak Mathematical Journal, 2024, 74 :115-126