Thermochemistry and Kinetics for 2-Butanone-3yl Radical (CH3C(=O)CH•CH3) Reactions with O2

被引:25
作者
Sebbar, Nadia [1 ]
Bozzelli, Joseph William [2 ]
Bockhorn, Henning [1 ]
机构
[1] KIT, Engler Bunte Inst, D-76131 Karlsruhe, Germany
[2] New Jersey Inst Technol, Dept Chem Engn Chem & Environm Sci, Newark, NJ 07102 USA
来源
ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS | 2011年 / 225卷 / 9-10期
关键词
Thermochemistry; Reaction Kinetics; Quantum Chemistry; Butanone Radical Oxidation; DENSITY-FUNCTIONAL THEORIES; COMPLETE BASIS-SET; THERMODYNAMIC PROPERTIES; VIBRATIONAL FREQUENCIES; THEORETICAL PROCEDURES; GAUSSIAN-3; ACETONE; PHOTODISSOCIATION; PHOTOOXIDATION; TROPOSPHERE;
D O I
10.1524/zpch.2011.0144
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermochemistry and chemical activation kinetics for the reaction of the secondary radical of 2-butanone, 2-butanone-3yl, with O-3(2) are reported. Thermochemical and kinetic parameters are determined for reactants, transition states structures and intermediates. Standard enthalpies and kinetic parameters are evaluated using ab initio (G3MP2B3 and G3), density functional (B3LYP/6-311g(d, p)) calculations and group additivity (GA). The C-H bond energies are determined for the three carbons of the 2-butanone, showing that the C-H bond energy (BE) on the secondary carbon is low at 90.5 kcalmol(-1). The CH3C(=O)(CHCH3)-C-center dot radical + O-2 association results in chemically-activated peroxy radical with 26 kcalmol(-1) excess of energy. The chemically activated adduct can dissociate to butanone-oxy radical + O, react back to butanone-3yl + O-2, form cyclic ethers or lactones, eliminate HO2 to form an olefinic ketone, or undergo rearrangement via intramolecular abstraction of hydrogen to form hydroperoxide and/or OH radicals. The hydroperoxide-alkyl radical intermediates can undergo further reactions forming cyclic ethers (lactones) and OH radicals. Quantum RRK analysis is used to calculate k(E) and master equation analysis is used for evaluation of pressure fall-off in these chemical activated reaction systems.
引用
收藏
页码:993 / 1018
页数:26
相关论文
共 39 条
[1]   Chloroacetone photodissociation at 193 nm and the subsequent dynamics of the CH3C(O)CH2 radical-an intermediate formed in the OH plus allene reaction en route to CH3 + ketene [J].
Alligood, Bridget W. ;
FitzPatrick, Benjamin L. ;
Szpunar, David E. ;
Butler, Laurie J. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (05)
[2]   Mechanism of atmospheric photooxidation of aromatics: A theoretical study [J].
Andino, JM ;
Smith, JN ;
Flagan, RC ;
Goddard, WA ;
Seinfeld, JH .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (26) :10967-10980
[3]   Gaussian-3 theory using density functional geometries and zero-point energies [J].
Baboul, AG ;
Curtiss, LA ;
Redfern, PC ;
Raghavachari, K .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (16) :7650-7657
[4]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[5]  
Benson S.W., 1968, THERMOCHEMICAL KINET
[6]   Study of acetone photodissociation over the wavelength range 248-330 nm: Evidence of a mechanism involving both the singlet and triplet excited states [J].
Blitz, Mark A. ;
Heard, Dwayne E. ;
Pilling, Michael J. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (21) :6742-6756
[7]   Gaussian-3 (G3) theory for molecules containing first and second-row atoms [J].
Curtiss, LA ;
Raghavachari, K ;
Redfern, PC ;
Rassolov, V ;
Pople, JA .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (18) :7764-7776
[8]   Assessment of Gaussian-3 and density functional theories for a larger experimental test set [J].
Curtiss, LA ;
Raghavachari, K ;
Redfern, PC ;
Pople, JA .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (17) :7374-7383
[9]   GAUSSIAN-2 THEORY FOR MOLECULAR-ENERGIES OF 1ST-ROW AND 2ND-ROW COMPOUNDS [J].
CURTISS, LA ;
RAGHAVACHARI, K ;
TRUCKS, GW ;
POPLE, JA .
JOURNAL OF CHEMICAL PHYSICS, 1991, 94 (11) :7221-7230
[10]   Evaluation of transition state properties by density functional theory [J].
Durant, JL .
CHEMICAL PHYSICS LETTERS, 1996, 256 (06) :595-602