PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models

被引:89
作者
Rozemberczki, Benedek [1 ]
Scherer, Paul [2 ]
He, Yixuan [2 ]
Panagopoulos, George [3 ]
Riedel, Alexander [4 ]
Astefanoaei, Maria [5 ]
Kiss, Oliver [6 ]
Beres, Ferenc [7 ]
Lopez, Guzman [8 ]
Collignon, Nicolas [9 ]
Sarkar, Rik [10 ]
机构
[1] AstraZeneca, London, England
[2] Univ Cambridge, Cambridge, England
[3] Ecole Polytech, Palaiseau, France
[4] Ernst Abbe Univ Appl Sci, Jena, Germany
[5] IT Univ Copenhagen, Copenhagen, Denmark
[6] Cent European Univ, Budapest, Hungary
[7] ELKH SZTAKI, Budapest, Hungary
[8] Tryolabs, Montevideo, Uruguay
[9] Pedal Me, London, England
[10] Univ Edinburgh, Edinburgh, Midlothian, Scotland
来源
PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021 | 2021年
关键词
neural networks; deep learning; dynamic graph; spatiotemporal data processing;
D O I
10.1145/3459637.3482014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present PyTorch Geometric Temporal, a deep learning framework combining state-of-the-art machine learning algorithms for neural spatiotemporal signal processing. The main goal of the library is to make temporal geometric deep learning available for researchers and machine learning practitioners in a unified easy-to-use framework. PyTorch Geometric Temporal was created with foundations on existing libraries in the PyTorch eco-system, streamlined neural network layer definitions, temporal snapshot generators for batching, and integrated benchmark datasets. These features are illustrated with a tutorial-like case study. Experiments demonstrate the predictive performance of the models implemented in the library on real-world problems such as epidemiological forecasting, ride-hail demand prediction, and web traffic management. Our sensitivity analysis of runtime shows that the framework can potentially operate on web-scale datasets with rich temporal features and spatial structure.
引用
收藏
页码:4564 / 4573
页数:10
相关论文
共 69 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
Anderson Sean, 2018, SDMTMB SPATIAL SPATI
[3]  
[Anonymous], 2007, HDB APPL SPATIAL ANA
[4]  
[Anonymous], 2018, STELLARGRAPH MACHINE
[5]  
Bahdanau D, 2016, Arxiv, DOI [arXiv:1409.0473, DOI 10.48550/ARXIV.1409.0473]
[6]  
Bai L, 2020, ADV NEUR IN, V33
[7]   Node embeddings in dynamic graphs [J].
Beres, Ferenc ;
Kelen, Domokos M. ;
Palovics, Robert ;
Benczur, Andras A. .
APPLIED NETWORK SCIENCE, 2019, 4 (01)
[8]   Temporal walk based centrality metric for graph streams [J].
Béres F. ;
Pálovics R. ;
Oláh A. ;
Benczúr A.A. .
Applied Network Science, 2018, 3 (01)
[9]   Scaling Graph Neural Networks with Approximate PageRank [J].
Bojchevski, Aleksandar ;
Klicpera, Johannes ;
Perozzi, Bryan ;
Kapoor, Amol ;
Blais, Martin ;
Rozemberczki, Benedek ;
Lukasik, Michal ;
Guennemann, Stephan .
KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, :2464-2473
[10]  
Bradbury J., 2018, JAX: composable transformations of Python+NumPy programs