Light Propagation in Flexible Thin-Film Amorphous Silicon Solar Cells with Nanotextured Metal Back Reflectors

被引:57
作者
Cao, Shuangying [1 ,2 ]
Yu, Dongliang [1 ,3 ]
Lin, Yinyue [1 ]
Zhang, Chi [1 ,3 ]
Lu, Linfeng [1 ]
Yin, Min [1 ]
Zhu, Xufei [3 ]
Chen, Xiaoyuan [1 ,2 ]
Li, Dongdong [1 ,2 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Low Carbon Convers Sci & Engn, Shanghai Adv Res Inst, Shanghai 201210, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Nanjing Univ Sci & Technol, Key Lab Soft Chem & Funct Mat, Educ Minist, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
thin-film solar cells; amorphous silicon; metal back reflectors; surface plasmonic resonances; cavity resonances; Bloch modes; TIO2; NANOTUBES; ABSORPTION; DESIGN;
D O I
10.1021/acsami.0c05330
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanostructured metal back reflectors (BRs) are playing an important role in thin-film solar cells, which facilitates an increased optical path length within a relatively thin absorbing layer. In this study, three nanotextured plasmonic metal (copper, gold, and silver) BRs underneath flexible thin-film amorphous silicon solar cells are systematically investigated. The solar cells with BRs demonstrate an excellent light harvesting capability in the long-wavelength region. With the combination of hybrid cavity resonances, horizontal modes, and surface plasmonic resonances, more incident light is coupled into the photoactive layer. Compared to the reference cells, the three devices with plasmonic BRs show lower parasitic absorptions with different individual absorption distributions. Both experimental and simulated results indicate that the silver BR cells delivered the best performance with a promising power conversion efficiency of 7.26%. These rational designs of light harvesting nanostructures provide guidelines for high-performance thin-film solar cells and other optoelectronic devices.
引用
收藏
页码:26184 / 26192
页数:9
相关论文
共 55 条
[1]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[2]   Light Trapping in Solar Cells: Can Periodic Beat Random? [J].
Battaglia, Corsin ;
Hsu, Ching-Mei ;
Soederstroem, Karin ;
Escarre, Jordi ;
Haug, Franz-Josef ;
Charriere, Mathieu ;
Boccard, Mathieu ;
Despeisse, Matthieu ;
Alexander, Duncan T. L. ;
Cantoni, Marco ;
Cui, Yi ;
Ballif, Christophe .
ACS NANO, 2012, 6 (03) :2790-2797
[3]  
Born M., 1999, Principles of Optics, DOI DOI 10.1017/CBO9781139644181
[4]   Design principles for particle plasmon enhanced solar cells [J].
Catchpole, K. R. ;
Polman, A. .
APPLIED PHYSICS LETTERS, 2008, 93 (19)
[5]   Plasmonic solar cells [J].
Catchpole, K.R. ;
Polman, A. .
Optics Express, 2008, 16 (26) :21793-21800
[6]   Stability of organic solar cells: challenges and strategies [J].
Cheng, Pei ;
Zhan, Xiaowei .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (09) :2544-2582
[7]   Plasmonic Nanostructures for Nano-Scale Bio-Sensing [J].
Chung, Taerin ;
Lee, Seung-Yeol ;
Song, Eui Young ;
Chun, Honggu ;
Lee, Byoungho .
SENSORS, 2011, 11 (11) :10907-10929
[8]   Plasmonic and metamaterial structures as electromagnetic absorbers [J].
Cui, Yanxia ;
He, Yingran ;
Jin, Yi ;
Ding, Fei ;
Yang, Liu ;
Ye, Yuqian ;
Zhong, Shoumin ;
Lin, Yinyue ;
He, Sailing .
LASER & PHOTONICS REVIEWS, 2014, 8 (04) :495-520
[9]   Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor [J].
Cushing, Scott K. ;
Li, Jiangtian ;
Meng, Fanke ;
Senty, Tess R. ;
Suri, Savan ;
Zhi, Mingjia ;
Li, Ming ;
Bristow, Alan D. ;
Wu, Nianqiang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (36) :15033-15041
[10]   Improved electron injection and efficiency in blue organic light-emitting diodes using coupled electric field near cathode [J].
Deng, Lingling ;
Zhou, Zhijie ;
Jia, Bolun ;
Zhou, Hongwei ;
Peng, Ling ;
Shang, Wenjuan ;
Feng, Jing ;
Chen, Shufen .
ORGANIC ELECTRONICS, 2018, 53 :346-352