Limit profiles and uniqueness of ground states to the nonlinear Choquard equations

被引:37
作者
Seok, Jinmyoung [1 ]
机构
[1] Kyonggi Univ, Dept Math, 154-42 Gwanggyosan Ro, Suwon 16227, South Korea
关键词
Semilinear elliptic; Choquard; limit profile; uniqueness; EXISTENCE;
D O I
10.1515/anona-2017-0182
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider nonlinear Choquard equations { -Delta u + u = (I-alpha * vertical bar u vertical bar(p))vertical bar u vertical bar(p-2)u in R-N, lim(x)(->infinity) U(x) =0, where I-alpha denotes the Riesz potential and alpha is an element of (0, N). In this paper, we investigate limit profiles of ground states of nonlinear Choquard equations as alpha -> 0 or alpha -> N. This leads to the uniqueness and nondegeneracy of ground states when alpha is sufficiently close to 0 or close to N.
引用
收藏
页码:1083 / 1098
页数:16
相关论文
共 20 条
[1]  
Choquard P, 2008, DIFFER INTEGRAL EQU, V21, P665
[2]  
FROHLICH J., 2003, SEM EQ DER PART POL
[3]  
Grafakos L, 2008, GRAD TEXTS MATH, V249, P1, DOI 10.1007/978-0-387-09432-8_1
[4]  
KWONG MK, 1989, ARCH RATION MECH AN, V105, P243
[5]   UNIQUENESS OF GROUND STATES FOR PSEUDORELATIVISTIC HARTREE EQUATIONS [J].
Lenzmann, Enno .
ANALYSIS & PDE, 2009, 2 (01) :1-27
[6]   Derivation of Hartree's theory for generic mean-field Bose systems [J].
Lewin, Mathieu ;
Phan Thanh Nam ;
Rougerie, Nicolas .
ADVANCES IN MATHEMATICS, 2014, 254 :570-621
[7]  
Lieb E. H., 2001, GRAD STUD MATH, V14
[8]  
LIEB EH, 1977, STUD APPL MATH, V57, P93
[9]  
Lions P. L., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P1063, DOI 10.1016/0362-546X(80)90016-4
[10]   Classification of Positive Solitary Solutions of the Nonlinear Choquard Equation [J].
Ma, Li ;
Zhao, Lin .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (02) :455-467