Spacelike surfaces in Lorentzian manifolds

被引:3
作者
Elghanmi, R [1 ]
机构
[1] WASHINGTON UNIV,DEPT MATH,ST LOUIS,MO 63131
关键词
spacelike surfaces; minimal surfaces; isotropic surfaces; moving frames;
D O I
10.1016/0926-2245(96)82418-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we first study spacelike surfaces in the Minkowski space which are minimal or have parallel mean curvature vector and which are isotropic. Minimal isotropic surfaces in Euclidean space are essentially holomorphic curves. In Minkowski space there is no complex structure, but even so we are able to characterize minimal isotropic surfaces explicitly. We study the Gauss map of isotropic surfaces into the Grassmannian of spacelike 2-planes in the Minkowski space, and give a generalization of a theorem of Chern. For the study of spacelike surfaces in general Lorentzian manifolds, we consider the Grassmann bundle of oriented spacelike tangent planes. We extend a general construction in the Riemannian case to the construction of a pseudo-Riemannian metric on this Grassman bundle. We give necessary and sufficient conditions for the Gauss map to be harmonic. We also investigate isotropic Codazzi surfaces with parallel mean curvature.
引用
收藏
页码:199 / 218
页数:20
相关论文
共 16 条
[1]  
BEEM JK, 1961, GLOBAL LORENTZIAN GE
[2]  
Chern SS., 1965, DIFFERENTIAL COMBINA, P187
[3]   HARMONIC MAPS FROM SURFACES TO COMPLEX PROJECTIVE SPACES [J].
EELLS, J ;
WOOD, JC .
ADVANCES IN MATHEMATICS, 1983, 49 (03) :217-263
[4]   ANOTHER REPORT ON HARMONIC MAPS [J].
EELLS, J ;
LEMAIRE, L .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :385-524
[5]  
Eells J., 1983, CBMS Regional Conference Series in Mathematics
[6]  
Eells J., 1985, ANN SCUOLA NORM PI S, V12, P589
[7]   THE FUNDAMENTAL EQUATIONS OF MINIMAL-SURFACES IN CP2 [J].
ESCHENBURG, JH ;
GUADALUPE, IV ;
TRIBUZY, RD .
MATHEMATISCHE ANNALEN, 1985, 270 (04) :571-598
[8]  
JENSEN GR, 1989, PACIFIC J MATH, V136
[9]  
JENSEN GR, 1988, MINIMAL SURFACES SPH, V12
[10]  
JENSEN GR, CODAZZI SURFACES 4 M