Algebraic Structures Associated to Orbifold Wreath Products

被引:1
作者
Farsi, Carla [1 ]
Seaton, Christopher [2 ]
机构
[1] Univ Colorado, Dept Math, Boulder, CO 80309 USA
[2] Rhodes Coll, Dept Math & Comp Sci, Memphis, TN 38112 USA
关键词
Orbifold; wreath product; wreath symmetric product; Lambda ring; Hopf algebra; EQUIVARIANT K-THEORY;
D O I
10.1017/is010006009jkt121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present structure theorems in terms of inertial decompositions for the wreath product ring of an orbifold presented as the quotient of a smooth, closed manifold by a compact, connected Lie group acting almost freely. In particular we show that this ring admits lambda-ring and Hopf algebra structures both abstractly and directly. This generalizes results known for global quotient orbifolds by finite groups.
引用
收藏
页码:323 / 338
页数:16
相关论文
共 30 条
  • [1] Twisted orbifold K-theory
    Adem, A
    Ruan, Y
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 237 (03) : 533 - 556
  • [2] Adem A., 2007, ORBIFOLDS STRINGY TO, V171
  • [3] POWER OPERATIONS IN K-THEORY
    ATIYAH, MF
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1966, 17 (66) : 165 - &
  • [4] Baranovsky V, 2008, MATH RES LETT, V15, P1073
  • [5] BAUM P, 1988, FETE TOPOLOGY, P163
  • [6] Blackadar B, 1998, K-theory for operator algebras, volume 5 of Mathematical Sciences Research Institute Publications, V5
  • [7] Bourbaki N., 1974, ELEMENTS MATH ALGE 1
  • [8] Conrey J B, 2007, ARXIVMATHPH0511024V2
  • [9] Dascalescu S., 2001, PURE APPL MATH, V235
  • [10] Echterhoff S, 2009, MUENSTER J MATH, V2, P65