The IVP for the Schrodinger-Poisson-Xα equation in one dimension

被引:14
作者
Stimming, HP [1 ]
机构
[1] Univ Vienna, Fak Math, Wolfgang Pauli Inst, A-1090 Vienna, Austria
关键词
nonlinear Schrodinger equation; quantum semiconductor modeling; semiclassical limit; time-dependent density functional theory;
D O I
10.1142/S0218202505000698
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Schrodinger-Poisson-X alpha equation is an effective one-particle approximation of a many-electron quantum system. In space dimension d < 3, existence analysis for this equation is not contained in standard results for nonlinear Schrodinger equations. We obtain existence and uniqueness of the Cauchy problem in d = I using semigroup theory. Furthermore, we discuss the semiclassical limit.
引用
收藏
页码:1169 / 1180
页数:12
相关论文
共 44 条
  • [21] LONG TIME DYNAMICS FOR THE ONE DIMENSIONAL NON LINEAR SCHRODINGER EQUATION
    Burq, Nicolas
    Thomann, Laurent
    Tzvetkov, Nikolay
    ANNALES DE L INSTITUT FOURIER, 2013, 63 (06) : 2137 - 2198
  • [22] A split-step finite difference method for nonparaxial nonlinear Schrodinger equation at critical dimension
    Malakuti, Kamyar
    Parilov, Evgueni
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (07) : 891 - 899
  • [23] KNOCKING OUT TEETH IN ONE-DIMENSIONAL PERIODIC NONLINEAR SCHRODINGER EQUATION
    Chaichenets, Leonid
    Hundertmark, Dirk
    Kunstmann, Peer
    Pattakos, Nikolaos
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (05) : 3714 - 3749
  • [24] The NLS Equation in Dimension One with Spatially Concentrated Nonlinearities: the Pointlike Limit
    Cacciapuoti, Claudio
    Finco, Domenico
    Noja, Diego
    Teta, Alessandro
    LETTERS IN MATHEMATICAL PHYSICS, 2014, 104 (12) : 1557 - 1570
  • [25] Effect of noise on extreme events probability in a one-dimensional nonlinear Schrodinger equation
    Lakoba, T. I.
    PHYSICS LETTERS A, 2015, 379 (32-33) : 1821 - 1827
  • [26] Knot soliton solutions for the one-dimensional non-linear Schrodinger equation
    Rahul, O. R.
    Murugesh, S.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2018, 2 (05):
  • [27] Gaussian beam formulations and interface conditions for the one-dimensional linear Schrodinger equation
    Yin, Dongsheng
    Zheng, Chunxiong
    WAVE MOTION, 2011, 48 (04) : 310 - 324
  • [28] Analysis of stability and instability for standing waves of the double power one dimensional nonlinear Schrodinger equation
    Kfoury, Perla
    Le Coz, Stefan
    Tsai, Tai-Peng
    COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) : 867 - 892
  • [29] Nonlinear mirror image method for nonlinear Schrodinger equation: Absorption/emission of one soliton by a boundary
    Caudrelier, Vincent
    Crampe, Nicolas
    Dibaya, Carlos Mbala
    STUDIES IN APPLIED MATHEMATICS, 2022, 148 (02) : 715 - 757
  • [30] Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schrodinger equation
    Xie, Shu-Sen
    Li, Guang-Xing
    Yi, Sucheol
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (9-12) : 1052 - 1060