The IVP for the Schrodinger-Poisson-Xα equation in one dimension

被引:14
作者
Stimming, HP [1 ]
机构
[1] Univ Vienna, Fak Math, Wolfgang Pauli Inst, A-1090 Vienna, Austria
关键词
nonlinear Schrodinger equation; quantum semiconductor modeling; semiclassical limit; time-dependent density functional theory;
D O I
10.1142/S0218202505000698
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Schrodinger-Poisson-X alpha equation is an effective one-particle approximation of a many-electron quantum system. In space dimension d < 3, existence analysis for this equation is not contained in standard results for nonlinear Schrodinger equations. We obtain existence and uniqueness of the Cauchy problem in d = I using semigroup theory. Furthermore, we discuss the semiclassical limit.
引用
收藏
页码:1169 / 1180
页数:12
相关论文
共 23 条
[1]   THE 2-DIMENSIONAL WIGNER-POISSON PROBLEM FOR AN ELECTRON-GAS IN THE CHARGE NEUTRAL CASE [J].
ARNOLD, A ;
NIER, F .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1991, 14 (09) :595-613
[2]  
Bao W., 2003, Communications in Mathematical Sciences, V1, P809, DOI DOI 10.4310/CMS.2003.V1.N4.A8
[3]   Mean field dynamics of fermions and the time-dependent Hartree-Fock equation [J].
Bardos, C ;
Golse, F ;
Gottlieb, AD ;
Mauser, NJ .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (06) :665-683
[4]   Derivation of the Schrodinger-Poisson equation from the quantum N-body problem [J].
Bardos, C ;
Erdös, L ;
Golse, F ;
Mauser, N ;
Yau, HT .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (06) :515-520
[5]  
Bardos C., 2000, METHODS APPL ANAL, V7, P275, DOI [DOI 10.4310/MAA.2000.V7.N2.A2), DOI 10.4310/MAA.2000.V7.N2.A2]
[6]   Local approximation for the Hartree-Fock exchange potential: A deformation approach [J].
Bokanowski, O ;
Mauser, NJ .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (06) :941-961
[7]  
Bourgain J., 1999, GLOBAL SOLUTIONS NON
[8]   Remarks on Wigner measures [J].
Carles, R .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (11) :981-984
[9]  
Carles R, 2000, INDIANA U MATH J, V49, P475
[10]  
Cazenave T., 1996, TEXTOS METODOS MATEM, V26