Groups whose non-permutable subgroups are metaquasihamiltonian

被引:6
作者
Ferrara, Maria [1 ]
Trombetti, Marco [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz Renato Caccioppol, Complesso Univ Monte S Angelo,Via Cintia, Naples, Italy
关键词
D O I
10.1515/jgth-2019-0143
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If X is a class of groups, define a sequence of group classes X-1, X-2, ..., X-k, ... by putting X-1 = X and choosing X-k(+)1 as the class of all groups whose non-permutable subgroups belong to X-k. In particular, if U is the class of abelian groups, U-2 is the class of quasimetahamiltonian groups, i.e. groups whose non-permutable subgroups are abelian. The aim of this paper is to study the structure of X-k-groups, with special emphasis on the case X = U. Among other results, it will also be proved that a group has a finite normal subgroup with quasihamiltonian quotient if and only if it is locally graded and belongs to U-k for some positive integer k.
引用
收藏
页码:513 / 529
页数:17
相关论文
共 13 条
[1]  
Baer R., 1959, ABH MATH SEM HAMBURG, V23, P11
[2]  
De Falco M, 2003, FORUM MATH, V15, P665
[3]  
De Falco M., 2003, Rendiconti Del Circolo Matematico Di Palermo Serie II, VLII, P70
[4]   Large characteristic subgroups with modular subgroup lattice [J].
De Giovanni, Francesco ;
Trombetti, Marco .
ARCHIV DER MATHEMATIK, 2018, 111 (02) :123-128
[5]  
Dixon M. R., GROUPS ALL SUBGROUPS
[6]  
Esposito D., RIC MAT
[7]  
Esposito D., B AUST MATH SOC
[8]   PERMUTABLE SUBGROUPS [J].
LENNOX, JC ;
WILSON, JS .
ARCHIV DER MATHEMATIK, 1977, 28 (02) :113-116
[9]   FINITE FRATTINI FACTORS IN FINITELY GENERATED SOLUBLE GROUPS [J].
LENNOX, JC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 41 (02) :356-360
[10]  
Robinson D.J.S., 1972, ERGEB MATH GRENZGEB, V63