机构:
Private Math Acad, 1-406,23,Maebong 5 Gil, Chonju 54921, Chonbuk, South KoreaPrivate Math Acad, 1-406,23,Maebong 5 Gil, Chonju 54921, Chonbuk, South Korea
Kim, Aeran
[1
]
机构:
[1] Private Math Acad, 1-406,23,Maebong 5 Gil, Chonju 54921, Chonbuk, South Korea
来源:
THAI JOURNAL OF MATHEMATICS
|
2022年
/
20卷
/
01期
关键词:
Bernoulli numbers;
Lucas sequence;
recursion theory;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper we establish simple recursion formulas for Bernoulli numbers, for instance, Sigma(n)(k=1) (4n + 2 4k) (-1)(k)2(2k-1) B-4k = n and Sigma(n)(k=0) (4n + 4 4k + 2) (-1)(k)2(2k) B4k+2 = n + 1 in Theorem 1.1. Furthermore applying a Lucas sequence V-n, we obtain Sigma(n)(k=1) (8n + 4 8k) (-1)(k)2(2k-1) B8kV4n-4k+2 = nV(4n+2) and Sigma(n)(k=0) (8n + 8 8k + 4) (-1)(k)2(2k) B8k+4V4n-4k+2 = -(n + 1)V4n+3 in Theorem 1.2.