Recursion Formulas for Bernoulli Numbers

被引:0
|
作者
Kim, Aeran [1 ]
机构
[1] Private Math Acad, 1-406,23,Maebong 5 Gil, Chonju 54921, Chonbuk, South Korea
来源
THAI JOURNAL OF MATHEMATICS | 2022年 / 20卷 / 01期
关键词
Bernoulli numbers; Lucas sequence; recursion theory;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish simple recursion formulas for Bernoulli numbers, for instance, Sigma(n)(k=1) (4n + 2 4k) (-1)(k)2(2k-1) B-4k = n and Sigma(n)(k=0) (4n + 4 4k + 2) (-1)(k)2(2k) B4k+2 = n + 1 in Theorem 1.1. Furthermore applying a Lucas sequence V-n, we obtain Sigma(n)(k=1) (8n + 4 8k) (-1)(k)2(2k-1) B8kV4n-4k+2 = nV(4n+2) and Sigma(n)(k=0) (8n + 8 8k + 4) (-1)(k)2(2k) B8k+4V4n-4k+2 = -(n + 1)V4n+3 in Theorem 1.2.
引用
收藏
页码:55 / 67
页数:13
相关论文
共 50 条
  • [1] A new recursion relationship for Bernoulli Numbers
    Zekiri, Abdelmoumene
    Bencherif, Farid
    ANNALES MATHEMATICAE ET INFORMATICAE, 2011, 38 : 123 - 126
  • [2] Explicit formulas for Euler polynomials and Bernoulli numbers
    Khaldi, Laala
    Bencherif, Farid
    Mihoubi, Miloud
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2021, 27 (04) : 80 - 89
  • [3] Generalized Bernoulli-Hurwitz numbers and the universal Bernoulli numbers
    Onishi, Y.
    RUSSIAN MATHEMATICAL SURVEYS, 2011, 66 (05) : 871 - 932
  • [4] Identities for Bernoulli polynomials and Bernoulli numbers
    Horst Alzer
    Man Kam Kwong
    Archiv der Mathematik, 2014, 102 : 521 - 529
  • [5] Identities for Bernoulli polynomials and Bernoulli numbers
    Alzer, Horst
    Kwong, Man Kam
    ARCHIV DER MATHEMATIK, 2014, 102 (06) : 521 - 529
  • [6] Recurrent formula of Bernoulli numbers and the relationships among the coefficients of beam,Bernoulli numbers and Euler numbers
    老大中
    赵珊珊
    老天夫
    Journal of Beijing Institute of Technology, 2015, 24 (03) : 298 - 304
  • [7] Recurrent formula of Bernoulli numbers and the relationships among the coefficients of beam, Bernoulli numbers and Euler numbers
    Lao, Da-Zhong
    Zhao, Shan-Shan
    Lao, Tian-Fu
    Journal of Beijing Institute of Technology (English Edition), 2015, 24 (03): : 298 - 304
  • [8] A note on Bernoulli numbers
    Muthumalai, Ramesh Kumar
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2013, 19 (01) : 59 - 65
  • [9] A note on the denominators of Bernoulli numbers
    Komatsu, Takao
    Luca, Florian
    Pita Ruiz, Claudio De J., V
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2014, 90 (05) : 71 - 72
  • [10] BERNOULLI NUMBERS AND SOLITONS - REVISITED
    Rzadkowski, Grzegorz
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2010, 17 (01) : 121 - 126