Fast and Robust Self-Representation Method for Hyperspectral Band Selection

被引:59
作者
Sun, Weiwei [1 ,2 ,3 ]
Tian, Long [3 ]
Xu, Yan [3 ]
Zhang, Dianfa [1 ]
Du, Qian [3 ]
机构
[1] Ningbo Univ, Dept Geog & Spatial Informat Tech, Ningbo 315211, Zhejiang, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Hubei, Peoples R China
[3] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
Band selection; classification; fast and robust self-representation (FRSR); hyperspectral imagery (HSI); structured random projections (SRP); DIMENSIONALITY REDUCTION; IMAGERY; ALGORITHMS; SUBSET;
D O I
10.1109/JSTARS.2017.2737400
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a fast and robust self-representation (FRSR) method is proposed to select a proper band subset from hyperspectral imagery (HSI). The FRSR assumes the separability structure of the HSI band set and transforms the problem of separable nonnegative matrix factorization into the robust self-representation (RSR) model. Then, the FRSR incorporates structured random projections into the RSR model to improve computational efficiency. The solution of FRSR is formulated into optimizing a convex problem and the augmented Lagrangian multipliers are adopted to estimate the proper factorization localizing matrix in the FRSR. The selected band subset is constituted with the bands corresponding to the r largest diagonal entries of the factorization localizing matrix. The experimental results show that FRSR outperforms state-of-the-art techniques in classification accuracy with lower computational cost.
引用
收藏
页码:5087 / 5098
页数:12
相关论文
共 51 条
[11]   Band selection in hyperspectral imagery using sparse support vector machines [J].
Chepushtanova, Sofya ;
Gittins, Christopher ;
Kirby, Michael .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XX, 2014, 9088
[12]   Dimensionality Reduction and Classification of Hyperspectral Images Using Ensemble Discriminative Local Metric Learning [J].
Dong, Yanni ;
Du, Bo ;
Zhang, Liangpei ;
Zhang, Lefei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (05) :2509-2524
[13]  
Donoho D, 2004, ADV NEUR IN, V16, P1141
[14]   HYPERSPECTRAL BAND SELECTION USING A COLLABORATIVE SPARSE MODEL [J].
Du, Qian ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, :3054-3057
[15]   Multiple Kernel Learning Based on Discriminative Kernel Clustering for Hyperspectral Band Selection [J].
Feng, Jie ;
Jiao, Licheng ;
Sun, Tao ;
Liu, Hongying ;
Zhang, Xiangrong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (11) :6516-6530
[16]   A non-negative low-rank representation for hyperspectral band selection [J].
Feng, Yachuang ;
Yuan, Yuan ;
Lu, Xiaoqiang .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (19) :4590-4609
[17]   Ant colony optimization-based supervised and unsupervised band selections for hyperspectral urban data classification [J].
Gao, Jianwei ;
Du, Qian ;
Gao, Lianru ;
Sun, Xu ;
Zhang, Bing .
JOURNAL OF APPLIED REMOTE SENSING, 2014, 8
[18]   Fast and Robust Recursive Algorithms for Separable Nonnegative Matrix Factorization [J].
Gillis, Nicolas ;
Vavasis, Stephen A. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (04) :698-714
[19]   ROBUSTNESS ANALYSIS OF HOTTOPIXX, A LINEAR PROGRAMMING MODEL FOR FACTORING NONNEGATIVE MATRICES [J].
Gillis, Nicolas .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (03) :1189-1212
[20]   Unsupervised Band Selection Based on Evolutionary Multiobjective Optimization for Hyperspectral Images [J].
Gong, Maoguo ;
Zhang, Mingyang ;
Yuan, Yuan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (01) :544-557