Fast and Robust Self-Representation Method for Hyperspectral Band Selection

被引:59
作者
Sun, Weiwei [1 ,2 ,3 ]
Tian, Long [3 ]
Xu, Yan [3 ]
Zhang, Dianfa [1 ]
Du, Qian [3 ]
机构
[1] Ningbo Univ, Dept Geog & Spatial Informat Tech, Ningbo 315211, Zhejiang, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Hubei, Peoples R China
[3] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
Band selection; classification; fast and robust self-representation (FRSR); hyperspectral imagery (HSI); structured random projections (SRP); DIMENSIONALITY REDUCTION; IMAGERY; ALGORITHMS; SUBSET;
D O I
10.1109/JSTARS.2017.2737400
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a fast and robust self-representation (FRSR) method is proposed to select a proper band subset from hyperspectral imagery (HSI). The FRSR assumes the separability structure of the HSI band set and transforms the problem of separable nonnegative matrix factorization into the robust self-representation (RSR) model. Then, the FRSR incorporates structured random projections into the RSR model to improve computational efficiency. The solution of FRSR is formulated into optimizing a convex problem and the augmented Lagrangian multipliers are adopted to estimate the proper factorization localizing matrix in the FRSR. The selected band subset is constituted with the bands corresponding to the r largest diagonal entries of the factorization localizing matrix. The experimental results show that FRSR outperforms state-of-the-art techniques in classification accuracy with lower computational cost.
引用
收藏
页码:5087 / 5098
页数:12
相关论文
共 51 条
[1]   EXhype: A tool for mineral classification using hyperspectral data [J].
Adep, Ramesh Nityanand ;
Shetty, Amba ;
Ramesh, H. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 124 :106-118
[2]  
[Anonymous], 2010, 100920105055 ARXIV
[3]  
[Anonymous], 2015, ENCY BIOMETRICS
[4]   Unsupervised feature extraction and band subset selection techniques based on relative entropy criteria for hyperspectral data analysis [J].
Arzuaga-Cruz, E ;
Jimenez-Rodriguez, LO ;
Vélez-Reyes, M .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY IX, 2003, 5093 :462-473
[5]   Mapping Bugweed (Solanum mauritianum) Infestations in Pinus patula Plantations Using Hyperspectral Imagery and Support Vector Machines [J].
Atkinson, Jonathan Tom ;
Ismail, Riyad ;
Robertson, Mark .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (01) :17-28
[6]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[7]   Advances in Hyperspectral Image Classification [J].
Camps-Valls, Gustavo ;
Tuia, Devis ;
Bruzzone, Lorenzo ;
Benediktsson, Jon Atli .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) :45-54
[8]   Supervised Band Selection Using Local Spatial Information for Hyperspectral Image [J].
Cao, Xianghai ;
Xiong, Tao ;
Jiao, Licheng .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (03) :329-333
[9]   Constrained band selection for hyperspectral imagery [J].
Chang, Chein-I ;
Wang, Su .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (06) :1575-1585
[10]   A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification [J].
Chang, CI ;
Du, Q ;
Sun, TL ;
Althouse, MLG .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (06) :2631-2641