Snapshot compressive spectral-depth imaging based on light field

被引:3
作者
Ding, Xiaoming [1 ,2 ]
Yan, QiangQiang [2 ]
Hu, Liang [3 ]
Zhou, Shubo [4 ]
Wei, Ruyi [2 ,5 ]
Wang, Xiaocheng [1 ]
Li, Yupeng [1 ]
机构
[1] Tianjin Normal Univ, Tianjin Key Lab Wireless Mobile Commun & Power Tr, Tianjin 300387, Peoples R China
[2] Xian Inst Opt & Precis Mech, CAS Key Lab Spectral Imaging Technol, Xian 710119, Peoples R China
[3] Aerosp Informat Res Inst, CAS Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[4] Donghua Univ, Inst Informat Sci & Technol, Shanghai 201620, Peoples R China
[5] Wuhan Univ, Elect Informat Sch, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Multidimensional Imaging; Spectral imaging; Compressed sensing; Light field; Depth estimation;
D O I
10.1186/s13634-022-00834-x
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a snapshot Compressed Light Field Imaging Spectrometer based on compressed sensing and light field concept, which can acquire the two-dimensional spatial distribution, depth estimation and spectral intensity of input scenes simultaneously. The primary structure of the system contains fore optics, coded aperture, dispersion element and light field sensor. The detected data can record the coded mixture spatial-spectral information of the input scene with direction information of light rays. The datacube containing depth estimation can be recovered with the compressed sensing and digital refocus framework. We establish the mathematical model of the system and conduct simulations for verification. The reconstruction strategy is demonstrated for the simulation data.
引用
收藏
页数:17
相关论文
共 32 条
[1]  
[Anonymous], 2001, HDB OPTICS, VI
[2]   Sparse Recovery of Hyperspectral Signal from Natural RGB Images [J].
Arad, Boaz ;
Ben-Shahar, Ohad .
COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 :19-34
[3]   A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration [J].
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) :2992-3004
[4]   Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images [J].
Cheng, Gong ;
Zhou, Peicheng ;
Han, Junwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12) :7405-7415
[5]  
Feng W., 2018, THESIS NANJING U SCI
[6]   3D compressive spectral integral imaging [J].
Feng, Weiyi ;
Rueda, Hoover ;
Fu, Chen ;
Arce, Gonzalo R. ;
He, Weiji ;
Chen, Qian .
OPTICS EXPRESS, 2016, 24 (22) :24859-24871
[7]   Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems [J].
Figueiredo, Mario A. T. ;
Nowak, Robert D. ;
Wright, Stephen J. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2007, 1 (04) :586-597
[8]   A review of snapshot multidimensional optical imaging: Measuring photon tags in parallel [J].
Gao, Liang ;
Wang, Lihong V. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 616 :1-37
[9]   IMAGING SPECTROMETRY FOR EARTH REMOTE-SENSING [J].
GOETZ, AFH ;
VANE, G ;
SOLOMON, JE ;
ROCK, BN .
SCIENCE, 1985, 228 (4704) :1147-1153
[10]   Review of snapshot spectral imaging technologies [J].
Hagen, Nathan ;
Kudenov, Michael W. .
OPTICAL ENGINEERING, 2013, 52 (09)