Trace manganese detection via differential pulse cathodic stripping voltammetry using disposable electrodes: additively manufactured nanographite electrochemical sensing platforms

被引:40
作者
Rocha, Diego P. [1 ,2 ]
Foster, Christopher W. [1 ]
Munoz, Rodrigo A. A. [2 ]
Buller, Gary A. [1 ]
Keefe, Edmund M. [1 ]
Banks, Craig E. [1 ]
机构
[1] Manchester Metropolitan Univ, Fac Sci & Engn, Chester St, Manchester M1 5GD, Lancs, England
[2] Univ Fed Uberlandia, Inst Chem, BR-38400902 Uberlandia, MG, Brazil
基金
英国工程与自然科学研究理事会;
关键词
SCREEN-PRINTED ELECTRODES; NATURAL-WATERS; ELECTROANALYSIS; ENHANCE; SENSORS; MN(II);
D O I
10.1039/d0an00018c
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Additive manufacturing is a promising technology for the rapid and economical fabrication of portable electroanalytical devices. In this paper we seek to determine how our bespoke additive manufacturing feedstocks act as the basis of an electrochemical sensing platform towards the sensing of manganese(ii) via differential pulse cathodic stripping voltammetry (DPCSV), despite the electrode comprising only 25 wt% nanographite and 75 wt% plastic (polylactic acid). The Additive Manufactured electrodes (AM-electrodes) are also critically compared to graphite screen-printed macroelectrodes (SPEs) and both are explored in model and real tap-water samples. Using optimized DPCSV conditions at pH 6.0, the analytical outputs using the AM-electrodes are as follows: limit of detection, 1.6 x 10(-9) mol L-1 (0.09 mu g L-1); analytical sensitivity, 3.4 mu A V mu mol(-1) L; linear range, 9.1 x 10(-9) mol L-1 to 2.7 x 10(-6) mol L-1 (R-2 = 0.998); and RSD 4.9% (N = 10 for 1 mu mol L-1). These results are compared to screen-printed macroelectrodes (SPEs) giving comparable results providing confidence that AM-electrodes can provide the basis for useful electrochemical sensing platforms. The proposed electroanalytical method (both AM-electrodes and SPEs) is shown to be successfully applied for the determination of manganese(ii) in tap water samples and in the analysis of a certified material (drinking water). The proposed method is feasible to be applied for in-loco analyses due to the portability of sensing; in addition, the use of AM-printed electrodes is attractive due to their low cost.
引用
收藏
页码:3424 / 3430
页数:7
相关论文
共 41 条
[21]  
Jin JY, 2000, ELECTROANAL, V12, P610, DOI 10.1002/(SICI)1521-4109(200005)12:8<610::AID-ELAN610>3.0.CO
[22]  
2-K
[23]   Determination of Manganese by Cathodic Stripping Voltammetry on a Microfabricated Platinum Thin-film Electrode [J].
Kang, Wenjing ;
Rusinek, Cory ;
Bange, Adam ;
Haynes, Erin ;
Heineman, William R. ;
Papautsky, Ian .
ELECTROANALYSIS, 2017, 29 (03) :686-695
[24]   Copper-Based Electrochemical Sensor with Palladium Electrode for Cathodic Stripping Voltammetry of Manganese [J].
Kang, Wenjing ;
Pei, Xing ;
Bange, Adam ;
Haynes, Erin N. ;
Heineman, William R. ;
Papautsky, Ian .
ANALYTICAL CHEMISTRY, 2014, 86 (24) :12070-12077
[25]  
Katic V., 2019, ACS APPL MATER INTER, V11, P38
[26]  
LABUDA J, 1989, MIKROCHIM ACTA, V1, P113
[27]   Recent developments and applications of screen-printed electrodes in environmental assays-A review [J].
Li, Meng ;
Li, Yuan-Ting ;
Li, Da-Wei ;
Long, Yi-Tao .
ANALYTICA CHIMICA ACTA, 2012, 734 :31-44
[28]  
Otto D. A., ENV MANGANESE GUIDEL
[29]   An automated catalytic spectrophotometric method for manganese analysis using a chip-multisyringe flow injection system (Chip-MSFIA) [J].
Phansi, Piyawan ;
Henriquez, Camelia ;
Palacio, Edwin ;
Wilairat, Prapin ;
Nacapricha, Duangjai ;
Cerda, Victor .
ANALYTICAL METHODS, 2014, 6 (14) :5088-5096
[30]   Complete Additively Manufactured (3D-Printed) Electrochemical Sensing Platform [J].
Richter, Eduardo M. ;
Rocha, Diego P. ;
Cardoso, Rafael M. ;
Keefe, Edmund M. ;
Foster, Christopher W. ;
Munoz, Rodrigo A. A. ;
Banks, Craig E. .
ANALYTICAL CHEMISTRY, 2019, 91 (20) :12844-12851