Classification of f-biharmonic submanifolds in Lorentz space forms

被引:1
|
作者
Du, Li [1 ]
机构
[1] Chongqing Univ Technol, Sch Sci, Chongqing 400054, Peoples R China
来源
OPEN MATHEMATICS | 2021年 / 19卷 / 01期
关键词
Lorentz space forms; f-biharmonic submanifolds; parallel normal mean curvature vector field; the shape operator; pseudo-umbilical; MEAN-CURVATURE; SATISFYING DELTA(H)OVER-RIGHT-ARROW; HARMONIC MAPS; HYPERSURFACES; SURFACES;
D O I
10.1515/math-2021-0084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, f-biharmonic submanifolds with parallel normalized mean curvature vector field in Lorentz space forms are discussed. When f is a constant, we prove that such submanifolds have parallel mean curvature vector field with the minimal polynomial of the shape operator of degree <= 2. When f is a function, we completely classify such pseudo-umbilical submanifolds.
引用
收藏
页码:1299 / 1314
页数:16
相关论文
共 50 条
  • [1] f-Biharmonic Submanifolds of Generalized Space Forms
    Roth, Julien
    Upadhyay, Abhitosh
    RESULTS IN MATHEMATICS, 2019, 75 (01)
  • [2] f-Biharmonic Submanifolds of Generalized Space Forms
    Julien Roth
    Abhitosh Upadhyay
    Results in Mathematics, 2020, 75
  • [3] f-BIHARMONIC SUBMANIFOLDS AND f-BIHARMONIC INTEGRAL SUBMANIFOLDS IN LOCALLY CONFORMAL ALMOST COSYMPLECTIC SPACE FORMS
    Aslam, Mohd
    Karaca, Fatma
    Siddiqui, Aliya Naaz
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (02): : 595 - 606
  • [4] f-Biharmonic Submanifolds in Space Forms and f-Biharmonic Riemannian Submersions from 3-Manifolds
    Wang, Ze-Ping
    Qin, Li-Hua
    MATHEMATICS, 2024, 12 (08)
  • [5] f-Biharmonic Integral Submanifolds in Generalized Sasakian Space Forms
    Karaca, Fatma
    FILOMAT, 2019, 33 (09) : 2561 - 2570
  • [6] ON f-BIHARMONIC MAPS AND f-BIHARMONIC SUBMANIFOLDS
    Ou, Ye-Lin
    PACIFIC JOURNAL OF MATHEMATICS, 2014, 271 (02) : 461 - 477
  • [7] Classification of f-Biharmonic Curves in Lorentz-Minkowski Space
    Du, Li
    Zhang, Juan
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [8] f-Biharmonic maps and f-biharmonic submanifolds II
    Ou, Ye-Lin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1285 - 1296
  • [9] On the f-biharmonic Maps and Submanifolds
    Zegga, Kaddour
    Cherif, A. Mohamed
    Djaa, Mustapha
    KYUNGPOOK MATHEMATICAL JOURNAL, 2015, 55 (01): : 157 - 168
  • [10] f-biharmonic and bi-f-harmonic submanifolds of generalized (k, μ)-space-forms
    Hui, Shyamal Kumar
    Breaz, Daniel
    Mandal, Pradip
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2019, 27 (03): : 97 - 112