Precise CO2 Reduction for Bilayer Graphene

被引:16
作者
Gong, Peng [1 ,2 ]
Tang, Can [1 ,2 ]
Wang, Boran [4 ]
Xiao, Taishi [1 ,2 ,4 ]
Zhu, Hao [4 ]
Li, Qiaowei [1 ,2 ]
Sun, Zhengzong [1 ,2 ,3 ]
机构
[1] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
[3] Fudan Univ, Yiwu Res Inst, Yiwu 322000, Zhejiang, Peoples R China
[4] Fudan Univ, Sch Microelect, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON-DIOXIDE; FORMIC-ACID; GROWTH; CO2; ELECTROREDUCTION; SELECTIVITY; CONVERSION; DOMAINS; BANDGAP;
D O I
10.1021/acscentsci.1c01578
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
It is of great significance to explore unique and diverse chemical pathways to convert CO2 into high-value-added products. Bilayer graphene (BLG), with a tunable twist angle and band structure, holds tremendous promise in both fundamental physics and nextgeneration high-performance devices. However, the pi-conjugation and precise two-atom thickness are hindering the selective pathway, through an uncontrolled CO2 reduction and perplexing growth mechanism. Here, we developed a chemical vapor deposition method to catalytically convert CO2 into a high-quality BLG single crystal with a room temperature mobility of 2346 cm2 V-1 s-1. In a finely controlled growth window, the CO2 molecule works as both the carbon source and the oxygen etchant, helping to precisely define the BLG nucleus and set a record growth rate of 300 mu m h-1.
引用
收藏
页码:394 / 401
页数:8
相关论文
共 50 条
[31]   Electrochemical reduction of CO2 on Ni (OH)2 doped water dispersible graphene under different electrolyte conditions [J].
Palanisamy, Siva ;
Srinivasan, Surendhiran .
SN APPLIED SCIENCES, 2019, 1 (08)
[32]   Electrocatalytic CO2 Reduction with a Half-Sandwich Cobalt Catalyst: Selectivity towards CO [J].
Kumar Pandey, Indresh ;
Kumar, Abhishek ;
Choudhury, Joyanta .
CHEMISTRY-AN ASIAN JOURNAL, 2020, 15 (06) :904-909
[33]   Origin of Catalytic Effect in the Reduction of CO2 at Nanostructured TiO2 Films [J].
Ramesha, Ganganahalli K. ;
Brennecke, Joan F. ;
Kamat, Prashant V. .
ACS CATALYSIS, 2014, 4 (09) :3249-3254
[34]   High Salt Electrolyte Solutions Challenge the Electrochemical CO2 Reduction Reaction to Formate at Indium and Tin Cathodes [J].
Kas, Aykut ;
Izadi, Paniz ;
Harnisch, Falk .
CHEMELECTROCHEM, 2023, 10 (23)
[35]   Overall mass balance evaluation of electrochemical reactors: The case of CO2 reduction [J].
Blom, Martijn J. W. ;
van Swaaij, Wim P. M. ;
Mul, Guido ;
Kersten, Sascha R. A. .
ELECTROCHIMICA ACTA, 2020, 333
[36]   Engineering Hydrogen Generation Sites to Promote Electrocatalytic CO2 Reduction to Formate [J].
Guo, Xinyue ;
Xu, Si-Min ;
Zhou, Hua ;
Ren, Yue ;
Ge, Ruixiang ;
Xu, Ming ;
Zheng, Lirong ;
Kong, Xianggui ;
Shao, Mingfei ;
Li, Zhenhua ;
Duan, Haohong .
ACS CATALYSIS, 2022, 12 (17) :10551-10559
[37]   Electrochemical reduction of CO2 using Pb catalysts synthesized in supercritical medium [J].
Garcia, Jesus ;
Jimenez, Carlos ;
Martinez, Fabiola ;
Camarillo, Rafael ;
Rincon, Jesusa .
JOURNAL OF CATALYSIS, 2018, 367 :72-80
[38]   Selective CO2 Reduction to Ethylene Using Imidazolium-Functionalized Copper [J].
Cheng, Banggui ;
Du, Jiehao ;
Yuan, Huiqing ;
Tao, Yuan ;
Chen, Ya ;
Lei, Jingxiang ;
Han, Zhiji .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (24) :27823-27832
[39]   Electrochemical CO2 reduction to formate on Tin cathode: Influence of anode materials [J].
Jiang, Hao ;
Zhao, Yuemin ;
Wang, Lizhang ;
Kong, Ying ;
Li, Fei ;
Li, Peng .
JOURNAL OF CO2 UTILIZATION, 2018, 26 :408-414
[40]   Electrochemically created roughened lead plate for electrochemical reduction of aqueous CO2 [J].
He, Zhiqiao ;
Shen, Jie ;
Ni, Zhili ;
Tang, Juntao ;
Song, Shuang ;
Chen, Jianmeng ;
Zhao, Li .
CATALYSIS COMMUNICATIONS, 2015, 72 :38-42