Precise CO2 Reduction for Bilayer Graphene

被引:16
作者
Gong, Peng [1 ,2 ]
Tang, Can [1 ,2 ]
Wang, Boran [4 ]
Xiao, Taishi [1 ,2 ,4 ]
Zhu, Hao [4 ]
Li, Qiaowei [1 ,2 ]
Sun, Zhengzong [1 ,2 ,3 ]
机构
[1] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
[3] Fudan Univ, Yiwu Res Inst, Yiwu 322000, Zhejiang, Peoples R China
[4] Fudan Univ, Sch Microelect, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON-DIOXIDE; FORMIC-ACID; GROWTH; CO2; ELECTROREDUCTION; SELECTIVITY; CONVERSION; DOMAINS; BANDGAP;
D O I
10.1021/acscentsci.1c01578
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
It is of great significance to explore unique and diverse chemical pathways to convert CO2 into high-value-added products. Bilayer graphene (BLG), with a tunable twist angle and band structure, holds tremendous promise in both fundamental physics and nextgeneration high-performance devices. However, the pi-conjugation and precise two-atom thickness are hindering the selective pathway, through an uncontrolled CO2 reduction and perplexing growth mechanism. Here, we developed a chemical vapor deposition method to catalytically convert CO2 into a high-quality BLG single crystal with a room temperature mobility of 2346 cm2 V-1 s-1. In a finely controlled growth window, the CO2 molecule works as both the carbon source and the oxygen etchant, helping to precisely define the BLG nucleus and set a record growth rate of 300 mu m h-1.
引用
收藏
页码:394 / 401
页数:8
相关论文
共 50 条
[21]   Electrochemical CO2 Reduction in the Presence of Impurities: Influences and Mitigation Strategies [J].
Harmon, Nia J. ;
Wang, Hailiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (12)
[22]   Development and Utilization of Gas Diffusion Electrodes for the Electrochemical Reduction of CO2 [J].
Kopljar, Dennis ;
Inan, Andrea ;
Vindayer, Patrick ;
Scholz, Ralf ;
Frangos, Nicolaos ;
Wagner, Norbert ;
Klemm, Elias .
CHEMIE INGENIEUR TECHNIK, 2015, 87 (06) :855-859
[23]   The anolyte matters: Towards highly efficient electrochemical CO2 reduction [J].
Jiang, Hao ;
Wang, Lizhang ;
Gao, Bai ;
Li, Yiran ;
Guo, Yadan ;
Zhuo, Mengning ;
Sun, Kaixuan ;
Lu, Binyu ;
Jia, Meiyu ;
Yu, Xiaoxia ;
Wang, Huidong ;
Li, Yongge .
CHEMICAL ENGINEERING JOURNAL, 2021, 422 (422)
[24]   Recent Advances of the Confinement Effects Boosting Electrochemical CO2 Reduction [J].
Liu, Guomeng ;
Zhan, Jiauyu ;
Zhang, Zisheng ;
Zhang, Lu-Hua ;
Yu, Fengshou .
CHEMISTRY-AN ASIAN JOURNAL, 2023, 18 (02)
[25]   Machine Learning in Screening High Performance Electrocatalysts for CO2 Reduction [J].
Zhang, Ning ;
Yang, Baopeng ;
Liu, Kang ;
Li, Hongmei ;
Chen, Gen ;
Qiu, Xiaoqing ;
Li, Wenzhang ;
Hu, Junhua ;
Fu, Junwei ;
Jiang, Yong ;
Liu, Min ;
Ye, Jinhua .
SMALL METHODS, 2021, 5 (11)
[26]   Designing Membrane Electrode Assembly for Electrochemical CO2 Reduction: a Review [J].
Wang, Xuerong ;
Zhao, Shulin ;
Guo, Tao ;
Yang, Luyao ;
Zhao, Qianqian ;
Wu, Yuping ;
Chen, Yuhui .
TRANSACTIONS OF TIANJIN UNIVERSITY, 2024, 30 (02) :117-129
[27]   Alloy Catalysts for Electrocatalytic CO2 Reduction [J].
Liu, Lizhen ;
Akhoundzadeh, Hossein ;
Li, Mingtao ;
Huang, Hongwei .
SMALL METHODS, 2023, 7 (09)
[28]   Designing Electrolyzers for Electrocatalytic CO2 Reduction [J].
Gao, Dunfeng ;
Wei, Pengfei ;
Li, Hefei ;
Lin, Long ;
Wang, Guoxiong ;
Bao, Xinhe .
ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (05)
[29]   Electrochemical CO2 reduction of graphene single-atom/cluster catalysts [J].
Gao, Yongze ;
Zhao, Mengdie ;
Jiang, Liyun ;
Yu, Qi .
MOLECULAR CATALYSIS, 2024, 562
[30]   Electrochemical Reduction of CO2: Effect of Convective CO2 Supply in Gas Diffusion Electrodes [J].
Duarte, Miguel ;
De Mot, Bert ;
Hereijgers, Jonas ;
Breugelmans, Tom .
CHEMELECTROCHEM, 2019, 6 (22) :5596-5602