Precise CO2 Reduction for Bilayer Graphene

被引:14
|
作者
Gong, Peng [1 ,2 ]
Tang, Can [1 ,2 ]
Wang, Boran [4 ]
Xiao, Taishi [1 ,2 ,4 ]
Zhu, Hao [4 ]
Li, Qiaowei [1 ,2 ]
Sun, Zhengzong [1 ,2 ,3 ]
机构
[1] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
[3] Fudan Univ, Yiwu Res Inst, Yiwu 322000, Zhejiang, Peoples R China
[4] Fudan Univ, Sch Microelect, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON-DIOXIDE; FORMIC-ACID; GROWTH; CO2; ELECTROREDUCTION; SELECTIVITY; CONVERSION; DOMAINS; BANDGAP;
D O I
10.1021/acscentsci.1c01578
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
It is of great significance to explore unique and diverse chemical pathways to convert CO2 into high-value-added products. Bilayer graphene (BLG), with a tunable twist angle and band structure, holds tremendous promise in both fundamental physics and nextgeneration high-performance devices. However, the pi-conjugation and precise two-atom thickness are hindering the selective pathway, through an uncontrolled CO2 reduction and perplexing growth mechanism. Here, we developed a chemical vapor deposition method to catalytically convert CO2 into a high-quality BLG single crystal with a room temperature mobility of 2346 cm2 V-1 s-1. In a finely controlled growth window, the CO2 molecule works as both the carbon source and the oxygen etchant, helping to precisely define the BLG nucleus and set a record growth rate of 300 mu m h-1.
引用
收藏
页码:394 / 401
页数:8
相关论文
共 50 条
  • [1] Different Pathways for CO2 Electrocatalytic Reduction by Confined CoTMPyP in Electrodeposited Reduced Graphene Oxide
    Bochlin, Yair
    Korin, Eli
    Bettelheim, Armand
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (12) : 8434 - 8440
  • [2] Bimetallic Electrocatalysts for CO2 Reduction
    Zhu, Wenlei
    Tackett, Brian M.
    Chen, Jingguang G.
    Jiao, Feng
    TOPICS IN CURRENT CHEMISTRY, 2018, 376 (06)
  • [3] Electrolyte Effects on the Electrochemical Reduction of CO2
    Moura de Salles Pupo, Marilia
    Kortlever, Ruud
    CHEMPHYSCHEM, 2019, 20 (22) : 2926 - 2935
  • [4] Electrochemical Reduction of CO2 at Copper Nanofoams
    Sen, Sujat
    Liu, Dan
    Palmore, G. Tayhas R.
    ACS CATALYSIS, 2014, 4 (09): : 3091 - 3095
  • [5] Electrochemical CO2 Reduction: A Classification Problem
    Bagger, Alexander
    Ju, Wen
    Sofia Varela, Ana
    Strasser, Peter
    Rossmeisl, Jan
    CHEMPHYSCHEM, 2017, 18 (22) : 3266 - 3273
  • [6] Electrodeposited Cu-Sn Alloy for Electrochemical CO2 Reduction to CO/HCOO-
    Morimoto, Masayuki
    Takatsuji, Yoshiyuki
    Yamasaki, Ryota
    Hashimoto, Hikaru
    Nakata, Ikumi
    Sakakura, Tatsuya
    Haruyama, Tetsuya
    ELECTROCATALYSIS, 2018, 9 (03) : 323 - 332
  • [7] Utilization of carbon nanotube and graphene in electrochemical CO2 reduction
    Sun, Xueliang
    Qi Zhang
    Li, Qingqing
    Zhang Xurui
    Shao, Xiaolin
    Jin Yi
    Zhang, Jiujun
    Liu, Yuyu
    BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2020, 10 (04): : 5815 - 5827
  • [8] CO2 Reduction: From Homogeneous to Heterogeneous Electrocatalysis
    Zhang, Sheng
    Fan, Qun
    Xia, Rong
    Meyer, Thomas J.
    ACCOUNTS OF CHEMICAL RESEARCH, 2020, 53 (01) : 255 - 264
  • [9] Electrocatalytic Reduction of CO2 on Mono-Metal/Graphene/Polyurethane Sponge Electrodes
    Yang, Yajing
    Wang, Linyuan
    Ma, Xin
    Zhu, Liangsheng
    Bian, Zhaoyong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (04): : 3805 - 3823
  • [10] Defective graphene for electrocatalytic CO2 reduction
    Han, Peng
    Yu, Xiaomin
    Yuan, Di
    Kuang, Min
    Wang, Yifei
    Al-Enizi, Abdullah M.
    Zheng, Gengfeng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 534 : 332 - 337