Flexible Lignin-based hydrogels with Self-healing and adhesive ability driven by noncovalent interactions

被引:72
|
作者
Cao, Jinfeng [1 ,2 ]
Zhao, Yanan [4 ]
Jin, Shicun [5 ]
Li, Jianzhang [1 ,2 ]
Wu, Ping [3 ]
Luo, Zhiqiang [3 ]
机构
[1] Beijing Forestry Univ, Beijing Key Lab Wood Sci & Engn, Beijing 100083, Peoples R China
[2] Beijing Forestry Univ, Beijing Adv Innovat Ctr Tree Breeding Mol Design, Beijing 100083, Peoples R China
[3] Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Wuhan 430074, Peoples R China
[4] First Affiliated Hosp Zhengzhou Univ, Dept Intervent Radiol, Zhengzhou 450052, Peoples R China
[5] Nanjing Forestry Univ, Coll Mat Sci & Engn, Coinnovat Ctr Efficient Proc & Utilizat Forest Re, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Hydrogels; Lignosulfonate; Polyvinylpyrrolidone; Self-healing materials; Biomaterials; DOUBLE-NETWORK HYDROGELS; TOUGH;
D O I
10.1016/j.cej.2021.132252
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Flexible and adhesive hydrogels with self-healing abilities have great potential in various fields. In the present study, a new type of self-healing and adhesive hydrogel driven by noncovalent interactions including hydrogen bonds and hydrophobic interactions was readily constructed by mixing lignosulfonate (LS) and polyvinylpyrrolidone (PVP) in water. When the pH value was adjusted to neutral, LS aggregated to form rigid noncovalent junctions and PVP associated with these domains to form a flexible network. A series of hydrogels were obtained by altering the concentrations of LS and PVP. Owing to the unique structure and dynamic and reversible characteristics of the gelation mechanism, the hydrogel exhibited good toughness, and self-healing ability. The abundant active groups and improved cohesion endowed the LS/PVP composite (LPC) hydrogel with good adhesive ability to various substrates. In addition, the LPC hydrogel exhibited excellent biocompatibility. Collectively, these advanced properties allowed the hydrogel to be successfully applied as a hemostatic agent to treat organ injuries. This work provides a new platform for multifunctional lignin-based hydrogel which could be applied in biomaterials.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Cellulose nanocomposite tough hydrogels: synergistic self-healing, adhesive and strain-sensitive properties
    Badawi, Mohammed Nujud
    Agrawal, Namrata
    Kumar, Yogesh
    Khan, Mujeeb
    Hatshan, Mohammad Rafe
    Alayyaf, Abdulmajeed Abdullah
    Adil, Syed Farooq
    POLYMER INTERNATIONAL, 2024, 73 (09) : 748 - 760
  • [42] Triterpenoid-Based Self-Healing Supramolecular Polymer Hydrogels Formed by Host-Guest Interactions
    Li, Ying
    Li, Jianzuo
    Zhao, Xia
    Yan, Qiang
    Gao, Yuxia
    Hao, Jie
    Hu, Jun
    Ju, Yong
    CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (51) : 18435 - 18441
  • [43] Highly Stretchable, Adhesive, and Self-Healing Silk Fibroin-Dopted Hydrogels for Wearable Sensors
    Zhao, Li
    Zhao, Jizhong
    Zhang, Fan
    Xu, Zijie
    Chen, Fan
    Shi, Yating
    Hou, Chen
    Huang, Yicheng
    Lin, Changjian
    Yu, Rui
    Guo, Wenxi
    ADVANCED HEALTHCARE MATERIALS, 2021, 10 (10)
  • [44] Phytic acid assist for self-healing nanocomposite hydrogels and their application in flexible strain sensors
    Wang, Yanan
    Shi, Shaoning
    Yang, Chenglin
    Liang, Ying
    Yang, Lixia
    Wang, Wenxiang
    Bai, Liangjiu
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 676
  • [45] Dynamic Hydrophobic Domains Enable the Fabrication of Mechanically Robust and Highly Elastic Polyvinyl alcohol)-Based Hydrogels with Excellent Self-Healing Ability
    Fang, Xu
    Li, Yixuan
    Li, Xiang
    Liu, Wenmo
    Yu, Xianghui
    Yan, Fei
    Sun, Junqi
    ACS MATERIALS LETTERS, 2020, 2 (07): : 764 - 770
  • [46] Facile Access to Guar Gum Based Supramolecular Hydrogels with Rapid Self-Healing Ability and Multistimuli Responsive Gel-Sol Transitions
    Li, Nan
    Liu, Chuanjie
    Chen, Wei
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2019, 67 (02) : 746 - 752
  • [47] Self-healing polysaccharide-based injectable hydrogels with antibacterial activity for wound healing
    Zheng, Bing-De
    Ye, Jing
    Yang, Yu-Cheng
    Huang, Ya -Yan
    Xiao, Mei-Tian
    CARBOHYDRATE POLYMERS, 2022, 275
  • [48] High-Conductivity and Ultrastretchable Self-Healing Hydrogels for Flexible Zinc-Ion Batteries
    Zeng, Zhifeng
    Liao, Shanshan
    Ma, Guanhao
    Qu, Jinqing
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (43) : 58961 - 58972
  • [49] Self-Healing Sensors Based on Dual Noncovalent Network Elastomer for Human Motion Monitoring
    Cao, Jie
    Zhang, Xu
    Lu, Canhui
    Luo, Yongyue
    Zhang, Xinxing
    MACROMOLECULAR RAPID COMMUNICATIONS, 2017, 38 (23)
  • [50] Ultra-stretchable, fast self-healing, adhesive, and strain-sensitive wearable sensors based on ionic conductive hydrogels
    Ren, Jie
    Zhang, Wenjing
    Li, Ruirui
    Zhang, Minmin
    Li, Yan
    Yang, Wu
    NEW JOURNAL OF CHEMISTRY, 2024, : 11705 - 11716