protein folding;
phi value analysis;
hydrophobic core;
hydrophobicity;
side chain packing;
mutagenesis;
D O I:
10.1110/ps.073105408
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
A critical step in the folding pathway of globular proteins is the formation of a tightly packed hydrophobic core. Several mutational studies have addressed the question of whether tight packing interactions are present during the rate-limiting step of folding. In some of these investigations, substituted side chains have been assumed to form native-like interactions in the transition state when the folding rates of mutant proteins correlate with their native-state stabilities. Alternatively, it has been argued that side chains participate in nonspecific hydrophobic collapse when the folding rates of mutant proteins correlate with side-chain hydrophobicity. In a reanalysis of published data, we have found that folding rates often correlate similarly well, or poorly, with both native-state stability and side-chain hydrophobicity, and it is therefore not possible to select an appropriate transition state model based on these one-parameter correlations. We show that this ambiguity can be resolved using a two-parameter model in which side chain burial and the formation of all other native-like interactions can occur asynchronously. Notably, the model agrees well with experimental data, even for positions where the one-parameter correlations are poor. We find that many side chains experience a previously unrecognized type of transition state environment in which specific, native-like interactions are formed, but hydrophobic burial dominates. Implications of these results to the design and analysis of protein folding studies are discussed.
机构:Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
de los Rios, MA
Daneshi, M
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
Daneshi, M
Plaxco, KW
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
机构:Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
de los Rios, MA
Daneshi, M
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
Daneshi, M
Plaxco, KW
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA