On the p-adic Beilinson conjecture and the equivariant Tamagawa number conjecture

被引:0
作者
Nickel, Andreas [1 ]
机构
[1] Univ Duisburg Essen, Fak Math, Thea Leymann Str 9, D-45127 Essen, Germany
来源
SELECTA MATHEMATICA-NEW SERIES | 2022年 / 28卷 / 01期
关键词
Beilinson conjecture; Equivariant Tamagawa number conjecture; Iwasawa theory; Regulator maps; ABELIAN L-FUNCTIONS; MAIN CONJECTURE; IWASAWA THEORY; SYNTOMIC REGULATORS; K-THEORY; NEGATIVE INTEGERS; STARK CONJECTURE; LEADING TERMS; VALUES; EXTENSIONS;
D O I
10.1007/s00029-021-00717-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E/K be a finite Galois extension of totally real number fields with Galois group G. Let p be an odd prime and let r > 1 be an odd integer. The p-adic Beilinson conjecture relates the values at s = r of p-adic Artin L-functions attached to the irreducible characters of G to those of corresponding complex Artin L-functions. We show that this conjecture, the equivariant Iwasawa main conjecture and a conjecture of Schneider imply the 'p-part' of the equivariant Tamagawa number conjecture for the pair (h(0)(Spec( E))(r), Z[G]). If r > 1 is even we obtain a similar result for Galois CM-extensions after restriction to 'minus parts'.
引用
收藏
页数:39
相关论文
共 78 条
[1]  
Barrett J., 2009, THESIS KINGS COLL LO
[2]  
Barsky D., 1978, GROUPE ETUDE ANAL UL, P23
[3]  
Beilinson A.A., 1984, CURRENT PROBLEMS MAT, V24, P181
[4]  
Besser A, 2009, PURE APPL MATH Q, V5, P375
[5]   Syntomic regulators and p-adic integration I:: Rigid syntomic regulators [J].
Besser, A .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 120 (2) :291-334
[6]   Equivariant epsilon constants, discriminants and etale cohomology [J].
Bley, W ;
Burns, D .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 87 :545-590
[7]   Equivariant epsilon constant conjectures for weakly ramified extensions [J].
Bley, Werner ;
Cobbe, Alessandro .
MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (3-4) :1217-1244
[8]  
Bloch Spencer., 1990, The Grothendieck Festschrift, Vol. I, P333
[9]  
Borel A., 1975, ANN SCI COLE NORM SU, V7, P235
[10]   Leading terms of Artin L-functions at s=0 and s=1 [J].
Breuning, Manuel ;
Burns, David .
COMPOSITIO MATHEMATICA, 2007, 143 (06) :1427-1464